Cancer-Specific Gene Therapy

Hui Wen Lo, Chi Ping Day, Mien Chie Hung

Research output: Contribution to journalReview articlepeer-review

68 Scopus citations

Abstract

Cancer cells transcriptionally activate many genes that are important for uncontrolled proliferation and cell death. Deregulated transcriptional machinery in tumor cells usually consists of increased expression/activity of transcription factors. Ideally, cancer-specific killing can be achieved by delivering a therapeutic gene under the control of the DNA elements that can be activated by transcription factors that are overexpressed and/or constitutively activated in cancer cells. Additionally, tumor-specific translation of tumor-killing genes has been also exploited in cancer gene therapy. Based on these rationales, cancer-specific expression of a therapeutic gene has emerged as a potentially successful approach for cancer gene therapy. To achieve tumor-specific expression, cancer-specific vectors are generally composed of promoters, enhancers, and/or 5′-UTR that are responsive to tumor-specific transcription factors. A number of cancer-specific promoters have been reported, such as those of probasin, human telomerase reverse transcriptase, survivin, ceruloplasmin, HER-2, osteocalcin, and carcinoembryonic antigen. Evidences suggest that the enhancer element targeted by β-catenin can be useful to target colon cancer cells. The 5′-UTR of the basic fibroblast growth factor-2 has been reported to provide tumor specificity. Moreover, a variety of therapeutic genes demonstrated direct antitumor effects such as those encoding proapoptotic proteins p53, E1A, p202, PEA3, BAX, Bik, and prodrug metabolizing enzymes, namely thymidine kinase and cytosine deaminase. As cancerous cells of different origins vary significantly in their genetic, transcriptional/translational, and cellular profiles, the success of a cancer gene therapy will not be promised unless it is carefully designed based on the biology of a specific tumor type. Thus, tremendous research efforts have been focused on the development of non-viral vectors that selectively target various tumors resulting in minimal toxicity in the normal tissues. Significant progresses were also made in the exploitation of various novel apoptotic, cytotoxic genes as therapeutic tools that suppress the growth of different tumors. Together, these recent advances provide rationales for future clinical testing of transcriptionally targeted non-viral vectors in cancer patients.

Original languageEnglish (US)
Pages (from-to)233-255
Number of pages23
JournalAdvances in Genetics
Volume54
DOIs
StatePublished - 2005

ASJC Scopus subject areas

  • Genetics

Fingerprint

Dive into the research topics of 'Cancer-Specific Gene Therapy'. Together they form a unique fingerprint.

Cite this