Characterization of TNFRSF19, a novel member of the tumor necrosis factor receptor superfamily

Shimin Hu, Koji Tamada, Jian Ni, Claudius Vincenz, Lieping Chen

Research output: Contribution to journalArticlepeer-review

50 Scopus citations

Abstract

By searching the expressed sequence tag database, a novel murine tumor necrosis factor receptor designated TNFRSF19 was identified. TNFRSF19 cDNA encodes a putative membrane protein of 348 amino acids with one incomplete and two complete cysteine-rich motifs within its extracellular region and a large cytoplasmic domain. TNFRSF19 mRNA can be detected in most murine tissues examined, particularly in brain, reproductive organs, and late developmental stages of murine embryo, but not in tissues of the immune system. The cell surface expression of the ligand of TNFRSF19 is highly restricted. Of 22 human and murine cell lines examined by FACS analysis, only Raji (B cell lymphoma cell line), GM847 (fibroblast cell line), 293 (embryonic kidney cell line), and K562 (chronic myeloid leukemia) were positive. TNFRSF19 did not bind newly cloned TNF ligands, including TWEAK (HGMW-approved symbol TNFSF12), VEGI/TL1 (HGMW-approved symbol TNFSF15), TL6/endokine (HGMW-approved symbol TNFSF18), APRIL (HGMW-approved symbol TNFSF13), OPGL (HGMW-approved symbol TNFSF11), LIGHT (HGMW-approved symbol TNFSF14), or BAFF/THANK (HGMW-approved symbol TNFSF13B) by enzyme-linked immunosorbent assay and FACS analyses. Overexpression of TNFRSF19 transduced neither apoptotic signaling nor signals leading to NF-κB induction. Taken together with the data that the TNFRSF19 extracellular domain-immunoglobulin fusion protein did not affect the allogeneic mixed lymphocyte reaction, our data indicate that TNFRSF19 is not involved in the modulation of immune responses.

Original languageEnglish (US)
Pages (from-to)103-107
Number of pages5
JournalGenomics
Volume62
Issue number1
DOIs
StatePublished - Nov 15 1999
Externally publishedYes

ASJC Scopus subject areas

  • Genetics

Fingerprint

Dive into the research topics of 'Characterization of TNFRSF19, a novel member of the tumor necrosis factor receptor superfamily'. Together they form a unique fingerprint.

Cite this