Computational design of small molecular modulators of protein–protein interactions with a novel thermodynamic cycle: Allosteric inhibitors of HIV-1 integrase

Qinfang Sun, Vijayan S.K. Ramaswamy, Ronald Levy, Nanjie Deng

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Targeting protein–protein interactions for therapeutic development involves designing small molecules to either disrupt or enhance a known PPI. For this purpose, it is necessary to compute reliably the effect of chemical modifications of small molecules on the protein–protein association free energy. Here we present results obtained using a novel thermodynamic free energy cycle, for the rational design of allosteric inhibitors of HIV-1 integrase (ALLINI) that act specifically in the early stage of the infection cycle. The new compounds can serve as molecular probes to dissect the multifunctional mechanisms of ALLINIs to inform the discovery of new allosteric inhibitors. The free energy protocol developed here can be more broadly applied to study quantitatively the effects of small molecules on modulating the strengths of protein–protein interactions.

Original languageEnglish (US)
Pages (from-to)438-447
Number of pages10
JournalProtein Science
Volume30
Issue number2
DOIs
StatePublished - Feb 2021

Keywords

  • HIV-1 integrase
  • allosteric inhibitors of HIV-1 integrase
  • molecular dynamics free energy simulation
  • protein–ligand binding free energy
  • protein–protein binding free energy
  • protein–protein interaction

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Computational design of small molecular modulators of protein–protein interactions with a novel thermodynamic cycle: Allosteric inhibitors of HIV-1 integrase'. Together they form a unique fingerprint.

Cite this