Computed Tomography–Based Stiffness Measures of Trabecular Bone Microstructure: Cadaveric Validation and In Vivo Application

Indranil Guha, Xialiou Zhang, Chamith S. Rajapakse, Elena M. Letuchy, Gregory Chang, Kathleen F. Janz, James C. Torner, Steven M. Levy, Punam K. Saha

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Osteoporosis causes bone fragility and elevates fracture risk. Applications of finite element (FE) analysis (FEA) for assessment of trabecular bone (Tb) microstructural strength at whole-body computed tomography (CT) imaging are limited due to challenges with Tb microstructural segmentation. We present a nonlinear FEA method for distal tibia CT scans evading binary segmentation of Tb microstructure, while accounting for bone microstructural distribution. First, the tibial axis in a CT scan was aligned with the FE loading axis. FE cubic mesh elements were modeled using image voxels, and CT intensity values were calibrated to ash density defining mechanical properties at individual elements. For FEA of an upright volume of interest (VOI), the bottom surface was fixed, and a constant displacement was applied at each vertex on the top surface simulating different loading conditions. The method was implemented and optimized using the ANSYS software. CT-derived computational modulus values were repeat scan reproducible (intraclass correlation coefficient [ICC] ≥ 0.97) and highly correlated (r ≥ 0.86) with the micro-CT (μCT)-derived values. FEA-derived von Mises stresses over the segmented Tb microregion were significantly higher (p < 1 × 10−11) than that over the marrow space. In vivo results showed that both shear and compressive modulus for males were higher (p < 0.01) than for females. Effect sizes for different modulus measures between males and females were moderate-to-high (≥0.55) and reduced to small-to-negligible (<0.40) when adjusted for pure lean mass. Among body size and composition attributes, pure lean mass and height showed highest (r ∈ [0.45 0.56]) and lowest (r ∈ [0.25 0.39]) linear correlation, respectively, with FE-derived modulus measures. In summary, CT-based nonlinear FEA provides an effective surrogate measure of Tb microstructural stiffness, and the relaxation of binary segmentation will extend the scope for FEA in human studies using in vivo imaging at relatively low-resolution.

Original languageEnglish (US)
Article numbere10627
JournalJBMR Plus
Volume6
Issue number6
DOIs
StatePublished - Jun 2022
Externally publishedYes

Keywords

  • ANSYS SOFTWARE
  • ASH DENSITY
  • BODY SIZE AND COMPOSITION
  • COMPRESSIVE AND SHEAR LOADING
  • CT IMAGING
  • MICROSTRUCTURE
  • NONLINEAR FEA
  • OSTEOPOROSIS
  • TB STIFFNESS
  • TRABECULAR BONE
  • VON MISES STRESS
  • YOUNG'S MODULUS

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Orthopedics and Sports Medicine

Fingerprint

Dive into the research topics of 'Computed Tomography–Based Stiffness Measures of Trabecular Bone Microstructure: Cadaveric Validation and In Vivo Application'. Together they form a unique fingerprint.

Cite this