Depletion of Endogenous Nitric Oxide Enhances Cisplatin-induced Apoptosis in a p53-dependent Manner in Melanoma Cell Lines

Chi Hui Tang, Elizabeth A. Grimm

Research output: Contribution to journalArticlepeer-review

84 Scopus citations

Abstract

The expression of inducible nitric-oxide synthase in melanoma tumor cells was recently shown to correlate strongly with poor patient survival after combination biochemotherapy (p < 0.001). Furthermore, evidence suggests that nitric oxide, a reaction product of nitric-oxide synthase, exhibits antiapoptotic activity in melanoma cells. We therefore hypothesized that nitric oxide antagonizes chemotherapy-induced apoptosis. Whether nitric oxide is capable of regulating cell growth and apoptotic responses to cisplatin treatment in melanoma cell lines was evaluated. We demonstrate herein that depletion of endogenously produced nitric oxide can inhibit melanoma proliferation and promote apoptosis. Moreover, our data indicate that the depletion of nitric oxide leads to changes in cell cycle regulation and enhances cisplatin-induced apoptosis in melanoma cells. Strikingly, we observed that the depletion of nitric oxide inhibits cisplatin-induced wild type p53 accumulation and p21Waf1/Cip1/Sdi1 expression in melanoma cells. When cisplatin-induced p53 binding to the p21Waf1/Cip1/Sdi1 promoter was examined, it was found that nitric oxide depletion significantly reduced the presence of p53-DNA complexes after cisplatin treatment. Furthermore, dominant negative inhibition of p53 activity enhanced cisplatin-induced apoptosis. Together, these data strongly suggest that endogenously produced nitric oxide is required for cisplatin-induced p53 activation and p21 Waf1/Cip1/Sdi1 expression, which can regulate melanoma sensitivity to cisplatin.

Original languageEnglish (US)
Pages (from-to)288-298
Number of pages11
JournalJournal of Biological Chemistry
Volume279
Issue number1
DOIs
StatePublished - Jan 2 2004

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Depletion of Endogenous Nitric Oxide Enhances Cisplatin-induced Apoptosis in a p53-dependent Manner in Melanoma Cell Lines'. Together they form a unique fingerprint.

Cite this