Dose modification factors for 192Ir high-dose-rate irradiation using Monte Carlo simulations

Bassel Kassas, Firas Mourtada, John L. Horton, Richard G. Lane, Thomas A. Buchholz, Eric A. Strom

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

A recently introduced brachytherapy system for partial breast irradiation, MammoSite, consists of a balloon applicator filled with contrast solution and a catheter for insertion of an 192Ir high-dose-rate (HDR) source. In using this system, the treatment dose is typically prescribed to be delivered 1 cm from the balloon's surface. Most treatment-planning systems currently in use for brachytherapy procedures use water-based dosimetry with no correction for heterogeneity. Therefore, these systems assume that full scatter exists regardless of the amount of tissue beyond the prescription line. This assumption might not be a reasonable one, especially when the tissue beyond the prescription line is thin. In such a case, the resulting limited scatter could cause an underdose to be delivered along the prescription line. We used Monte Carlo simulations to investigate how the thickness of the tissue between the surface of the balloon and the skin or lung affected the treatment dose delivery. Calculations were based on a spherical water phantom with a diameter of 30 cm and balloons with diameters of 4 cm, 5 cm, and 6 cm. The dose modification factor is defined as the ratio of the dose rate at the typical prescription distance of 1 cm from the balloon's surface with full scatter obtained using the water phantom to the dose rate with a finite tissue thickness (from 0 cm to 10 cm) beyond the prescription line. The dose modification factor was found to be dependent on the balloon diameter and was 1.098 for the 4-cm balloon and 1.132 for the 6-cm balloon with no tissue beyond the prescription distance at the breast-skin interface. The dose modification factor at the breast-lung interface was 1.067 for the 4-cm balloon and 1.096 for the 6-cm balloon. Even 5 cm of tissue beyond the prescription distance could not result in full scatter. Thus, we found that considering the effect of diminished scatter is important to accurate dosimetry. Not accounting for the dose modification factor may result in delivering a lower dose than is prescribed.

Original languageEnglish (US)
Pages (from-to)28-34
Number of pages7
JournalJournal of applied clinical medical physics
Volume7
Issue number3
DOIs
StatePublished - 2006

Keywords

  • Brachytherapy
  • HDR
  • MammoSite
  • Monte Carlo
  • Partial breast irradiation

ASJC Scopus subject areas

  • Radiation
  • Instrumentation
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Dose modification factors for 192Ir high-dose-rate irradiation using Monte Carlo simulations'. Together they form a unique fingerprint.

Cite this