Effects of velocity modulation during surgical needle insertion

T. K. Podder, D. P. Clark, D. Fuller, J. Sherman, W. S. Ng, L. Liao, D. J. Rubens, J. G. Strang, E. M. Messing, Y. D. Zhang, Y. Yu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

59 Scopus citations

Abstract

Precise interstitial intervention is essential for many medical diagnostic and therapeutic procedures. But accurate insertion and placement of surgical needle in soft tissue is quite challenging. The understanding of the interaction between surgical needle and soft tissue is very important to develop new devices and systems to achieve better accuracy and to deliver quality treatment. In this paper we present the effects of velocity (linear, rotational, and oscillatory) modulation on needle force and target deflection. We have experimentally verified our hypothesis that needle insertion with continuous rotation reduces target movement and needle force significantly. We have observed little changes in force and target deflection in rotational oscillation (at least at lower frequency) of the needle.

Original languageEnglish (US)
Title of host publicationProceedings of the 2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5766-5770
Number of pages5
ISBN (Print)0780387406, 9780780387409
DOIs
StatePublished - 2005
Externally publishedYes
Event2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005 - Shanghai, China
Duration: Sep 1 2005Sep 4 2005

Publication series

NameAnnual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
Volume7 VOLS
ISSN (Print)0589-1019

Other

Other2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005
Country/TerritoryChina
CityShanghai
Period9/1/059/4/05

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Effects of velocity modulation during surgical needle insertion'. Together they form a unique fingerprint.

Cite this