Electron slowing-down spectra in water for electron and photon sources calculated with the Geant4-DNA code

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Recently, a very low energy extension was added to the Monte Carlo simulation toolkit Geant4. It is intended for radiobiological modeling and is referred to as Geant4-DNA. Its performance, however, has not been systematically benchmarked in terms of transport characteristics. This study reports on the electron slowing-down spectra and mean energy per ion pair, the W-value, in water for monoenergetic electron and photon sources calculated with Geant4-DNA. These quantities depend on electron energy, but not on spatial or angular variables which makes them a good choice for testing the model of energy transfer processes. The spectra also have a scientific value for radiobiological modeling as they describe the energy distribution of electrons entering small volumes, such as the cell nucleus. Comparisons of Geant4-DNA results with previous studies showed overall good agreement. Some differences in slowing-down spectra between Geant4-DNA and previous studies were found at 100 eV and at approximately 500 eV that were attributed to approximations in models of vibrational excitations and atomic de-excitation after ionization by electron impact. We also found that the high-energy part of the Geant4-DNA spectrum for a 1 keV electron source was higher, and the asymptotic high-energy W-value was lower than previous studies reported.

Original languageEnglish (US)
Pages (from-to)1087-1094
Number of pages8
JournalPhysics in medicine and biology
Volume57
Issue number4
DOIs
StatePublished - Feb 21 2012
Externally publishedYes

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Electron slowing-down spectra in water for electron and photon sources calculated with the Geant4-DNA code'. Together they form a unique fingerprint.

Cite this