Engraftment of prevascularized, tissue engineered constructs in a novel rabbit segmental bone defect model

Alexandre Kaempfen, Atanas Todorov, Sinan Güven, René D. Largo, Claude Jaquiéry, Arnaud Scherberich, Ivan Martin, Dirk J. Schaefer

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

The gold standard treatment of large segmental bone defects is autologous bone transfer, which suffers from low availability and additional morbidity. Tissue engineered bone able to engraft orthotopically and a suitable animal model for pre-clinical testing are direly needed. This study aimed to evaluate engraftment of tissue-engineered bone with different prevascularization strategies in a novel segmental defect model in the rabbit humerus. Decellularized bone matrix (Tutobone) seeded with bone marrow mesenchymal stromal cells was used directly orthotopically or combined with a vessel and inserted immediately (1-step) or only after six weeks of subcutaneous “incubation” (2-step). After 12 weeks, histological and radiological assessment was performed. Variable callus formation was observed. No bone formation or remodeling of the graft through TRAP positive osteoclasts could be detected. Instead, a variable amount of necrotic tissue formed. Although necrotic area correlated significantly with amount of vessels and the 2-step strategy had significantly more vessels than the 1-step strategy, no significant reduction of necrotic area was found. In conclusion, the animal model developed here represents a highly challenging situation, for which a suitable engineered bone graft with better prevascularization, better resorbability and higher osteogenicity has yet to be developed.

Original languageEnglish (US)
Pages (from-to)12616-12630
Number of pages15
JournalInternational journal of molecular sciences
Volume16
Issue number6
DOIs
StatePublished - Jun 4 2015
Externally publishedYes

Keywords

  • Animal model
  • Bone resorption
  • Decellularized bone
  • Osteosynthesis vascularization
  • Tissue engineering

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Engraftment of prevascularized, tissue engineered constructs in a novel rabbit segmental bone defect model'. Together they form a unique fingerprint.

Cite this