Ethanol exposure increases mutation rate through error-prone polymerases

Karin Voordeckers, Camilla Colding, Lavinia Grasso, Benjamin Pardo, Lore Hoes, Jacek Kominek, Kim Gielens, Kaat Dekoster, Jonathan Gordon, Elisa Van der Zande, Peter Bircham, Toon Swings, Jan Michiels, Peter Van Loo, Sandra Nuyts, Philippe Pasero, Michael Lisby, Kevin J. Verstrepen

    Research output: Contribution to journalArticlepeer-review

    23 Scopus citations

    Abstract

    Ethanol is a ubiquitous environmental stressor that is toxic to all lifeforms. Here, we use the model eukaryote Saccharomyces cerevisiae to show that exposure to sublethal ethanol concentrations causes DNA replication stress and an increased mutation rate. Specifically, we find that ethanol slows down replication and affects localization of Mrc1, a conserved protein that helps stabilize the replisome. In addition, ethanol exposure also results in the recruitment of error-prone DNA polymerases to the replication fork. Interestingly, preventing this recruitment through mutagenesis of the PCNA/Pol30 polymerase clamp or deleting specific error-prone polymerases abolishes the mutagenic effect of ethanol. Taken together, this suggests that the mutagenic effect depends on a complex mechanism, where dysfunctional replication forks lead to recruitment of error-prone polymerases. Apart from providing a general mechanistic framework for the mutagenic effect of ethanol, our findings may also provide a route to better understand and prevent ethanol-associated carcinogenesis in higher eukaryotes.

    Original languageEnglish (US)
    Article number3664
    JournalNature communications
    Volume11
    Issue number1
    DOIs
    StatePublished - Dec 1 2020

    ASJC Scopus subject areas

    • General Chemistry
    • General Biochemistry, Genetics and Molecular Biology
    • General Physics and Astronomy

    Fingerprint

    Dive into the research topics of 'Ethanol exposure increases mutation rate through error-prone polymerases'. Together they form a unique fingerprint.

    Cite this