Evaluation of the relative stability of liganded versus ligand-free protein conformations using Simplicial Neighborhood Analysis of Protein Packing (SNAPP) method

Douglas B. Sherman, Shuxing Zhang, J. Bruce Pitner, Alexander Tropsha

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Many proteins change their conformation upon ligand binding. For instance, bacterial periplasmic binding proteins (bPBPs), which transport nutrients into the cytoplasm, generally consist of two globular domains connected by strands, forming a hinge. During ligand binding, hinge motion changes the conformation from the open to the closed form. Both forms can be crystallized without a ligand, suggesting that the energy difference between them is small. We applied Simplicial Neighborhood Analysis of Protein Packing (SNAPP) as a method to evaluate the relative stability of open and closed forms in bPBPs. Using united residue representation of amino acids, SNAPP performs Delaunay tessellation of the protein, producing an aggregate of space-filling, irregular tetrahedra with nearest neighbor residues at the vertices. The SNAPP statistical scoring function is derived from log-likelihood scores for all possible quadruplet compositions of amino acids found in a representative subset of the Protein Data Bank, and the sum of the scores for a given protein provides the total SNAPP score. Results of scoring for bPBPs suggest that in most cases, the unliganded form is more stable than the liganded form, and this conclusion is corroborated by similar observations of other proteins undergoing conformation changes upon binding their ligands. The results of these studies suggest that the SNAPP method can be used to predict the relative stability of accessible protein conformations. Furthermore, the SNAPP method allows delineation of the role of individual residues in protein stabilization, thereby providing new testable hypotheses for rational site-directed mutagenesis in the context of protein engineering.

Original languageEnglish (US)
Pages (from-to)828-838
Number of pages11
JournalProteins: Structure, Function and Genetics
Volume56
Issue number4
DOIs
StatePublished - Sep 1 2004
Externally publishedYes

Keywords

  • Conformational stability change
  • Delaunay tessellation
  • Differential SNAPP profile analysis
  • Ligand binding
  • Periplasmic binding proteins

ASJC Scopus subject areas

  • Structural Biology
  • Biochemistry
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Evaluation of the relative stability of liganded versus ligand-free protein conformations using Simplicial Neighborhood Analysis of Protein Packing (SNAPP) method'. Together they form a unique fingerprint.

Cite this