Factors affecting the in vitro micronucleus assay for evaluation of nanomaterials

Yan Li, Shareen H. Doak, Jian Yan, David H. Chen, Min Zhou, Roberta A. Mittelstaedt, Ying Chen, Chun Li, Tao Chen

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

A number of in vitro methodologies have been used to assess the genotoxicity of different nanomaterials, including titanium dioxide nanoparticles (TiO2 NPs) and silver nanoparticles (AgNPs). The in vitro micronucleus assay is one of the most commonly used test methods for genotoxicity evaluation of nanomaterials. However, due to the novel features of nanomaterials, such as high adsorption capacity and fluorescence properties, there are unexpected interactions with experimental components and detection systems. In this study, we evaluate the interference by two nanoparticles, AgNPs andTiO2 NPs, with the in vitro micronucleus assay system and possible confounding factors affecting cytotoxicity and genotoxicity assessment of the nanomaterials including cell lines with different p53 status, nanoparticle coatings and fluorescence, cytochalasin B, fetal bovine serum in cell treatment medium and different measurement methodologies for detecting micronuclei. Our results showed that micronucleus induction by AgNPs was similar when evaluated using flow cytometry or microscope, whereas the induction by TiO2 NPs was different using the two methods due toTiO2’s fluorescence interference with the cytometry equipment. Cells with the mutated p53 gene were more sensitive to micronucleus induction by AgNPs than the p53 wild-type cells. The presence of serum during treatment increased the toxicity of AgNPs. The coatings of nanoparticles played an important role in the genotoxicity of AgNPs. These collective data highlight the importance of considering the unique properties of nanoparticles in assessing their genotoxicity using the in vitro micronucleus assay.

Original languageEnglish (US)
Pages (from-to)151-159
Number of pages9
JournalMutagenesis
Volume32
Issue number1
DOIs
StatePublished - Jan 1 2017

ASJC Scopus subject areas

  • Genetics
  • Toxicology
  • Genetics(clinical)
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Factors affecting the in vitro micronucleus assay for evaluation of nanomaterials'. Together they form a unique fingerprint.

Cite this