Farnesyltransferase inhibitors induce DNA damage via reactive oxygen species in human cancer cells

Jingxuan Pan, Miaorong She, Zhi Xiang Xu, Lily Sun, Sai Ching Jim Yeung

    Research output: Contribution to journalArticlepeer-review

    85 Scopus citations

    Abstract

    Farnesyltransferase inhibitors (FTIs) possess antitumor activity. Based on recent findings, we hypothesized that FTIs induce reactive oxygen species (ROS) that damage DNA, leading to DNA damage responses. To test this hypothesis, we investigated the effects of FTIs on the generation of ROS, DNA double-strand breaks (DSB), DNA damage responses, and RhoB, and the effects of quenching ROS on these FTI effects. We evaluated four FTIs in human cancer cell lines of different tissue origins. We found that FTIs induced ROS and DSBs. Suppressing expression of the β-subunit of farnesyltransferase with siRNA did not induce ROS, but slightly attenuated the ROS induced by FTIs. N-acetyl-L-cysteine (NAC), but not caspase inhibitors, blocked FTI-induced DSBs, suggesting that the DSBs were caused by ROS and did not result from apoptosis. The DSBs led to DNA damage responses. H2AX became phosphorylated and formed nuclear foci. The DNA-damage-sensing molecules involved were probably ataxia-telangiectasia mutated protein (ATM) and DNA-dependent protein kinase (DNA-PK) but not ATM- and Rad3-related protein (ATR). Key components of the homologous recombination and nonhomologous end joining repair pathways (DNA-PK, BRCA1, and NBS1) underwent phosphorylation and formed nuclear foci. RhoB, a mediator of the antineoplastic effect of FTIs and a protein inducible by DNA damage, was increased by FTIs. This increase was blocked by NAC. We concluded that FTIs induced oxidative DNA damage by inducing ROS and initiated DNA damage responses, including RhoB induction, and there was a complex relationship among FTIs, farnesyltransferase, ROS, and RhoB. Our data also imply that inhibitors of DNA repair may accentuate the clinical efficacy of FTIs.

    Original languageEnglish (US)
    Pages (from-to)3671-3681
    Number of pages11
    JournalCancer Research
    Volume65
    Issue number9
    DOIs
    StatePublished - May 1 2005

    ASJC Scopus subject areas

    • Oncology
    • Cancer Research

    Fingerprint

    Dive into the research topics of 'Farnesyltransferase inhibitors induce DNA damage via reactive oxygen species in human cancer cells'. Together they form a unique fingerprint.

    Cite this