FoxO-Mediated Defense against Oxidative Stress in Osteoblasts Is Indispensable for Skeletal Homeostasis in Mice

Elena Ambrogini, Maria Almeida, Marta Martin-Millan, Ji Hye Paik, Ronald A. DePinho, Li Han, Joseph Goellner, Robert S. Weinstein, Robert L. Jilka, Charles A. O'Brien, Stavros C. Manolagas

Research output: Contribution to journalArticlepeer-review

231 Scopus citations

Abstract

Aging increases oxidative stress and osteoblast apoptosis and decreases bone mass, whereas forkhead box O (FoxO) transcription factors defend against oxidative stress by activating genes involved in free radical scavenging and apoptosis. Conditional deletion of FoxO1, FoxO3, and FoxO4 in 3-month-old mice resulted in an increase in oxidative stress in bone and osteoblast apoptosis and a decrease in the number of osteoblasts, the rate of bone formation, and bone mass at cancellous and cortical sites. The effect of the deletion on osteoblast apoptosis was cell autonomous and resulted from oxidative stress. Conversely, overexpression of a FoxO3 transgene in mature osteoblasts decreased oxidative stress and osteoblast apoptosis and increased osteoblast number, bone formation rate, and vertebral bone mass. We conclude that FoxO-dependent oxidative defense provides a mechanism to handle the oxygen free radicals constantly generated by the aerobic metabolism of osteoblasts and is thereby indispensable for bone mass homeostasis.

Original languageEnglish (US)
Pages (from-to)136-146
Number of pages11
JournalCell Metabolism
Volume11
Issue number2
DOIs
StatePublished - Feb 3 2010
Externally publishedYes

Keywords

  • HUMDISEASE

ASJC Scopus subject areas

  • Physiology
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'FoxO-Mediated Defense against Oxidative Stress in Osteoblasts Is Indispensable for Skeletal Homeostasis in Mice'. Together they form a unique fingerprint.

Cite this