Functionally distinct roles for eEF2K in the control of ribosome availability and p-body abundance

Patrick R. Smith, Sarah Loerch, Nikesh Kunder, Alexander D. Stanowick, Tzu Fang Lou, Zachary T. Campbell

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Processing bodies (p-bodies) are a prototypical phase-separated RNA-containing granule. Their abundance is highly dynamic and has been linked to translation. Yet, the molecular mechanisms responsible for coordinate control of the two processes are unclear. Here, we uncover key roles for eEF2 kinase (eEF2K) in the control of ribosome availability and p-body abundance. eEF2K acts on a sole known substrate, eEF2, to inhibit translation. We find that the eEF2K agonist nelfinavir abolishes p-bodies in sensory neurons and impairs translation. To probe the latter, we used cryo-electron microscopy. Nelfinavir stabilizes vacant 80S ribosomes. They contain SERBP1 in place of mRNA and eEF2 in the acceptor site. Phosphorylated eEF2 associates with inactive ribosomes that resist splitting in vitro. Collectively, the data suggest that eEF2K defines a population of inactive ribosomes resistant to recycling and protected from degradation. Thus, eEF2K activity is central to both p-body abundance and ribosome availability in sensory neurons.

Original languageEnglish (US)
Article number6789
JournalNature communications
Volume12
Issue number1
DOIs
StatePublished - Dec 2021
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Functionally distinct roles for eEF2K in the control of ribosome availability and p-body abundance'. Together they form a unique fingerprint.

Cite this