Gemcitabine in leukemia: A phase I clinical, plasma, and cellular pharmacology study

Ralf Grunewald, Hagop Kantarjian, Min Du, Karen Faucher, Peter Tarossoff, William Plunkett

Research output: Contribution to journalArticlepeer-review

226 Scopus citations

Abstract

Purpose: Phase I clinical and in vitro studies of gemcitabine (2′,2′-difluorodeoxycytidine; dFdC) have demonstrated that the accumulation rate of dFdC 5′-triphosphate (dFdCTP) in mononuclear and leukemia cells is saturated when plasma or extracellular dFdC levels exceed 15 to 20 μmol/L. Thus, we designed a phase I study to maximize the accumulation of dFdCTP by leukemia cells by administering dFdC at 10 mg/m2/min, a dose rate calculated to produce steady-state plasma dFdC levels that exceed 15 to 20 μmol/L. Portents and Methods: The treatment intensity was increased in patients (n = 22) with relapsed or refractory acute leukemia or chronic myelogenous leukemia (CML) in blast crisis by prolonging the infusion duration but maintaining the same rate. Doses of dFdC between 1,200 mg/m2 and 6,400 mg/m2 were administered weekly for 3 weeks. Results: The maximum-tolerated dose was 4,800 mg/m2 infused over 480 minutes. The mean steady-state dFdC level in plasma of all Infusions was 26.5 ± 9 μmol/L (n = 19). The accumulation rates of dFdCTP in circulating leukemia cells varied greatly among patients but remained linear in eight patients infused for 120 to 240 minutes, and up to or beyond 360 minutes in five of eight additional patients. Elimination of dFdCTP was significantly related to its cellular concentration: blasts with greater than 450 μmol/L dFdCTP exhibited biphasic elimination, whereas blasts with lower dFdCTP concentrations exhibited linear kinetics. Biphasic elimination was associated with higher dFdCTP areas under the concentration-times-time curve (AUCs) and greater inhibition of DNA synthesis. Conclusion: Studies of the cellular pharmacology and pharmacodynamics of dFdC may be useful in optimizing protocol designs for leukemia.

Original languageEnglish (US)
Pages (from-to)406-413
Number of pages8
JournalJournal of Clinical Oncology
Volume10
Issue number3
StatePublished - 1992

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Gemcitabine in leukemia: A phase I clinical, plasma, and cellular pharmacology study'. Together they form a unique fingerprint.

Cite this