Genetic variants in telomere-maintenance genes and bladder cancer risk

Joshua Chang, Colin P. Dinney, Maosheng Huang, Xifeng Wu, Jian Gu

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Telomeres are critical in maintaining genomic stability. Genetic variants in telomere pathway genes may affect telomere and telomerase function, and subsequently cancer risk. We evaluated 126 SNPs from 10 genes related to telomere regulation in relation to bladder cancer risk. Five SNPs, 4 from TEP1 gene and 1 from PINX1 gene, were found to be highly significant (P<0.01). Out of these, the most significant association was found in rs2228041 of TEP1 (OR 1.66, 95% CI 1.19-2.31) while rs1469557 of PINX1 had a protective effect (OR 0.75, 95% CI 0.61-0.93). Haplotype analysis showed that a TEP1 haplotype consisting of the variant alleles of 7 SNPs exhibited a 2.28 fold increased risk (95% CI 1.13-4.60). We then performed cumulative analysis of multiple risk variants, as well as Classification and Regression Tree (CART) to look for gene-gene interactions. In cumulative effect analysis, the group with 4-5 risk variants had an OR of 2.57 (95% CI = 1.62-4.09) versus the reference group with 0 risk variants. The CART analysis categorized individuals into five subgroups with different bladder cancer risk profiles based on their distinct genotype background. To our knowledge, this is one of the largest, most comprehensive studies on bladder cancer risk concerning telomere-regulating pathway gene SNPs and our results support that genetic variations of telomere maintenance modulate bladder cancer risk individually and jointly.

Original languageEnglish (US)
Article numbere30665
JournalPloS one
Volume7
Issue number2
DOIs
StatePublished - Feb 17 2012

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General

Fingerprint

Dive into the research topics of 'Genetic variants in telomere-maintenance genes and bladder cancer risk'. Together they form a unique fingerprint.

Cite this