Global H3K4me3 genome mapping reveals alterations of innate immunity signaling and overexpression of JMJD3 in human myelodysplastic syndrome CD34+ cells

Y. Wei, R. Chen, S. Dimicoli, C. Bueso-Ramos, D. Neuberg, S. Pierce, H. Wang, H. Yang, Y. Jia, H. Zheng, Z. Fang, M. Nguyen, I. Ganan-Gomez, B. Ebert, R. Levine, H. Kantarjian, G. Garcia-Manero

Research output: Contribution to journalArticlepeer-review

73 Scopus citations

Abstract

The molecular bases of myelodysplastic syndromes (MDS) are not fully understood. Trimethylated histone 3 lysine 4 (H3K4me3) is present in promoters of actively transcribed genes and has been shown to be involved in hematopoietic differentiation. We performed a genome-wide H3K4me3 CHIP-Seq (chromatin immunoprecipitation coupled with whole genome sequencing) analysis of primary MDS bone marrow (BM) CD34+ cells. This resulted in the identification of 36 genes marked by distinct higher levels of promoter H3K4me3 in MDS. A majority of these genes are involved in nuclear factor (NF)-κB activation and innate immunity signaling. We then analyzed expression of histone demethylases and observed significant overexpression of the JmjC-domain histone demethylase JMJD3 (KDM6b) in MDS CD34+ cells. Furthermore, we demonstrate that JMJD3 has a positive effect on transcription of multiple CHIP-Seq identified genes involved in NF-κB activation. Inhibition of JMJD3 using shRNA in primary BM MDS CD34+ cells resulted in an increased number of erythroid colonies in samples isolated from patients with lower-risk MDS. Taken together, these data indicate the deregulation of H3K4me3 and associated abnormal activation of innate immunity signals have a role in the pathogenesis of MDS and that targeting these signals may have potential therapeutic value in MDS.

Original languageEnglish (US)
Pages (from-to)2177-2186
Number of pages10
JournalLeukemia
Volume27
Issue number11
DOIs
StatePublished - Nov 2013

Keywords

  • CHIP-Seq
  • H3K4me3
  • JMJD3
  • innate immunity
  • myelodysplastic syndromes

ASJC Scopus subject areas

  • Hematology
  • Oncology
  • Cancer Research

MD Anderson CCSG core facilities

  • Bioinformatics Shared Resource
  • Clinical Trials Office

Fingerprint

Dive into the research topics of 'Global H3K4me3 genome mapping reveals alterations of innate immunity signaling and overexpression of JMJD3 in human myelodysplastic syndrome CD34+ cells'. Together they form a unique fingerprint.

Cite this