Glycolipid Metabolite β-Glucosylceramide Is a Neutrophil Extracellular Trap-Inducing Ligand of Mincle Released during Bacterial Infection and Inflammation

Atul Sharma, Arun Chauhan, Pooja Chauhan, Dustin L. Evans, Randolph E. Szlabick, Mary O. Aaland, Bibhuti B. Mishra, Jyotika Sharma

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Neutrophil extracellular traps (NETs) are implicated in host defense and inflammatory pathologies alike. A wide range of pathogen- and host-derived factors are known to induce NETs, yet the knowledge about specific receptor-ligand interactions in this response is limited. We previously reported that macrophage-inducible C-type lectin (Mincle) regulates NET formation. In this article, we identify glycosphingolipid β-glucosylceramide (β-GlcCer) as a specific NET-inducing ligand of Mincle. We found that purified β-GlcCer induced NETs in mouse primary neutrophils in vitro and in vivo, and this effect was abrogated in Mincle deficiency. Cell-free β-GlcCer accumulated in the lungs of pneumonic mice, which correlated with pulmonary NET formation in wild-type, but not in Mincle2/2, mice infected intranasally with Klebsiella pneumoniae. Although leukocyte infiltration by β-GlcCer administration in vivo did not require Mincle, NETs induced by this sphingolipid were important for bacterial clearance during Klebsiella infection. Mechanistically, β-GlcCer did not activate reactive oxygen species formation in neutrophils but required autophagy and glycolysis for NET formation, because ATG4 inhibitor NSC185058, as well as glycolysis inhibitor 2-deoxy-D-glucose, abrogated β-GlcCer-induced NETs. Forced autophagy activation by tamoxifen could overcome the inhibitory effect of glycolysis blockage on β-GlcCer-mediated NET formation, suggesting that autophagy activation is sufficient to induce NETs in response to this metabolite in the absence of glycolysis. Finally, β-GlcCer accumulated in the plasma of patients with systemic inflammatory response syndrome, and its levels correlated with the extent of systemic NET formation in these patients. Overall, our results posit β-GlcCer as a potent NET-inducing ligand of Mincle with diagnostic and therapeutic potential in inflammatory disease settings.

Original languageEnglish (US)
Pages (from-to)391-400
Number of pages10
JournalJournal of Immunology
Volume209
Issue number2
DOIs
StatePublished - Jul 15 2022
Externally publishedYes

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology

Fingerprint

Dive into the research topics of 'Glycolipid Metabolite β-Glucosylceramide Is a Neutrophil Extracellular Trap-Inducing Ligand of Mincle Released during Bacterial Infection and Inflammation'. Together they form a unique fingerprint.

Cite this