TY - JOUR
T1 - HDAC1 regulates the chromatin landscape to control transcriptional dependencies in chronic lymphocytic leukemia
AU - Lai, Tzung Huei
AU - Ozer, Hatice Gulcin
AU - Gasparini, Pierluigi
AU - Nigita, Giovanni
AU - Distefano, Rosario
AU - Yu, Lianbo
AU - Ravikrishnan, Janani
AU - Yilmaz, Selen
AU - Gallegos, Juan
AU - Shukla, Sachet
AU - Puduvalli, Vinay
AU - Woyach, Jennifer
AU - Lapalombella, Rosa
AU - Blachly, James
AU - Byrd, John C.
AU - Sampath, Deepa
N1 - Publisher Copyright:
© 2023 by The American Society of Hematology.
PY - 2023/6/1
Y1 - 2023/6/1
N2 - Chronic lymphocytic leukemia (CLL) is a quiescent B-cell malignancy that depends on transcriptional dysregulation for survival. The histone deacetylases are transcriptional regulators whose role within the regulatory chromatin and consequence on the CLL transcriptome is poorly characterized. Here, we profiled and integrated the genome-wide occupancy of HDAC1, BRD4, H3K27Ac, and H3K9Ac signals with chromatin accessibility, Pol2 occupancy, and target expression signatures in CLL cells. We identified that when HDAC1 was recruited within super-enhancers (SEs) marked by acetylated H3K27 and BRD4, it functioned as a transcriptional activator that drove the de novo expression of select genes to facilitate survival and progression in CLL. Targeting HDACs reduced BRD4 and Pol2 engagement to downregulate the transcript and proteins levels of specific oncogenic driver genes in CLL such as BLK, a key mediator of the B-cell receptor pathway, core transcription factors such as PAX5 and IKZF3, and the antiapoptotic gene, BCL2. Concurrently, HDAC1, when recruited in the absence of SEs, repressed target gene expression. HDAC inhibition reversed silencing of a defined set of protein-coding and noncoding RNA genes. We focused on a specific set of microRNA genes and showed that their upregulation was inversely correlated with the expression of CLL-specific survival, transcription factor, and signaling genes. Our findings identify that the transcriptional activator and repressor functions of HDACs cooperate within the same tumor to establish the transcriptional dependencies essential for survival in CLL.
AB - Chronic lymphocytic leukemia (CLL) is a quiescent B-cell malignancy that depends on transcriptional dysregulation for survival. The histone deacetylases are transcriptional regulators whose role within the regulatory chromatin and consequence on the CLL transcriptome is poorly characterized. Here, we profiled and integrated the genome-wide occupancy of HDAC1, BRD4, H3K27Ac, and H3K9Ac signals with chromatin accessibility, Pol2 occupancy, and target expression signatures in CLL cells. We identified that when HDAC1 was recruited within super-enhancers (SEs) marked by acetylated H3K27 and BRD4, it functioned as a transcriptional activator that drove the de novo expression of select genes to facilitate survival and progression in CLL. Targeting HDACs reduced BRD4 and Pol2 engagement to downregulate the transcript and proteins levels of specific oncogenic driver genes in CLL such as BLK, a key mediator of the B-cell receptor pathway, core transcription factors such as PAX5 and IKZF3, and the antiapoptotic gene, BCL2. Concurrently, HDAC1, when recruited in the absence of SEs, repressed target gene expression. HDAC inhibition reversed silencing of a defined set of protein-coding and noncoding RNA genes. We focused on a specific set of microRNA genes and showed that their upregulation was inversely correlated with the expression of CLL-specific survival, transcription factor, and signaling genes. Our findings identify that the transcriptional activator and repressor functions of HDACs cooperate within the same tumor to establish the transcriptional dependencies essential for survival in CLL.
UR - http://www.scopus.com/inward/record.url?scp=85164936354&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85164936354&partnerID=8YFLogxK
U2 - 10.1182/bloodadvances.2022007998
DO - 10.1182/bloodadvances.2022007998
M3 - Article
C2 - 36287107
AN - SCOPUS:85164936354
SN - 2473-9529
VL - 7
SP - 2897
EP - 2911
JO - Blood Advances
JF - Blood Advances
IS - 12
ER -