Histogram analysis of ADC in brain tumor patients

Debrup Banerjee, Jihong Wang, Jiang Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

At various stage of progression, most brain tumors are not homogenous. In this presentation, we retrospectively studied the distribution of ADC values inside tumor volume during the course of tumor treatment and progression for a selective group of patients who underwent an anti-VEGF trial. Complete MRI studies were obtained for this selected group of patients including pre- and multiple follow-up, post-treatment imaging studies. In each MRI imaging study, multiple scan series were obtained as a standard protocol which includes T1, T2, T1-post contrast, FLAIR and DTI derived images (ADC, FA etc.) for each visit. All scan series (T1, T2, FLAIR, post-contrast T1) were registered to the corresponding DTI scan at patient's first visit. Conventionally, hyper-intensity regions on T1-post contrast images are believed to represent the core tumor region while regions highlighted by FLAIR may overestimate tumor size. Thus we annotated tumor regions on the T1-post contrast scans and ADC intensity values for pixels were extracted inside tumor regions as defined on T1-post scans. We fit a mixture Gaussian (MG) model for the extracted pixels using the Expectation-Maximization (EM) algorithm, which produced a set of parameters (mean, various and mixture coefficients) for the MG model. This procedure was performed for each visits resulting in a series of GM parameters. We studied the parameters fitted for ADC and see if they can be used as indicators for tumor progression. Additionally, we studied the ADC characteristics in the peri-tumoral region as identified by hyper-intensity on FLAIR scans. The results show that ADC histogram analysis of the tumor region supports the two compartment model that suggests the low ADC value subregion corresponding to densely packed cancer cell while the higher ADC value region corresponding to a mixture of viable and necrotic cells with superimposed edema. Careful studies of the composition and relative volume of the two compartments in tumor region may provide some insights in the early assessment of tumor response to therapy for recurrence brain cancer patients.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2011
Subtitle of host publicationPhysics of Medical Imaging
DOIs
StatePublished - 2011
EventMedical Imaging 2011: Physics of Medical Imaging - Lake Buena Vista, FL, United States
Duration: Feb 13 2011Feb 17 2011

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume7961
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2011: Physics of Medical Imaging
Country/TerritoryUnited States
CityLake Buena Vista, FL
Period2/13/112/17/11

Keywords

  • ADC
  • Compartment
  • Gaussian
  • Progression
  • Tumor

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Histogram analysis of ADC in brain tumor patients'. Together they form a unique fingerprint.

Cite this