Histone deacetylase inhibitor-induced cancer stem cells exhibit high pentose phosphate pathway metabolism

Bisrat G. Debeb, Lara Lacerda, Richard Larson, Adam R. Wolfe, Savitri Krishnamurthy, James M. Reuben, Naoto T. Ueno, Michael Gilcrease, Wendy A. Woodward

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Purpose: We recently demonstrated that histone deacetylase (HDAC) inhibitors can "reprogram" differentiated triple-negative breast cancer cells to become quiescent stem-like cancer cells. We hypothesized that the metabolic state of such cells differs from that of their differentiated progeny. Results: In untreated cells, glucose uptake was higher in ALDH+ cells than in ALDH- cells (p = 0.01) but lactate production was not different; treating ALDH- or ALDH+ cells with VA or SAHA similarly increased glucose uptake without changing lactate production but upregulated G6PD, a rate-limiting enzyme in pentose phosphate pathway metabolism. NADPH production was higher in HDAC inhibitor-treated stem-like cells than in vehicle-treated cells (p < 0.05). Two G6PD inhibitors, 6-aminonicotinamide and dehydroepiandrosterone, decreased mammosphere formation efficiency and ALDH activity and 6-aminonicotinamide reduced the VAinduced increase in ALDH+ cells. Finally, patients expressing high G6PD mRNA had significantly worse overall survival (p < 0.001), and patients with high G6PD protein showed a similar trend towards worse disease-specific survival (p = 0.06). Methods: Glucose consumption, lactate and NADPH production, and reactive oxygen species generation were compared in aldehyde dehydrogenase (ALDH)-positive and -negative cells in the presence or absence of the HDAC inhibitors valproic acid (VA) or suberoylanilide hydroxamic acid (SAHA). Glucose-6-phosphate dehydrogenase (G6PD) expression was evaluated in a tissue microarray from 94 patients with nodepositive invasive breast carcinoma and in two publically available databases and correlated with overall survival. Conclusions: Energy metabolism in HDAC inhibitor-induced stem-like cancer cells differed sharply from that of differentiated cell types. HDAC inhibitor-induced dedifferentiation promoted metabolic reprogramming into the pentose phosphate pathway, which is targeted effectively by G6PD inhibition. These findings highlight a potential dual-therapy approach to targeting bulk differentiated cells with HDAC inhibitors and CSCs with G6PD inhibitors.

Original languageEnglish (US)
Pages (from-to)28329-28339
Number of pages11
JournalOncotarget
Volume7
Issue number19
DOIs
StatePublished - May 10 2016

Keywords

  • Cancer stem cells
  • G6PD
  • HDAC inhibitors
  • Pentose phosphate pathway

ASJC Scopus subject areas

  • Oncology

Fingerprint

Dive into the research topics of 'Histone deacetylase inhibitor-induced cancer stem cells exhibit high pentose phosphate pathway metabolism'. Together they form a unique fingerprint.

Cite this