Hoxd11 specifies a program of metanephric kidney development within the intermediate mesoderm of the mouse embryo

Joshua W. Mugford, Petra Sipilä, Akio Kobayashi, Richard R. Behringer, Andrew P. McMahon

Research output: Contribution to journalArticlepeer-review

76 Scopus citations

Abstract

The mammalian kidney consists of an array of tubules connected to a ductal system that collectively function to control water/salt balance and to remove waste from the organisms' circulatory system. During mammalian embryogenesis, three kidney structures form within the intermediate mesoderm. The two most anterior structures, the pronephros and the mesonephros, are transitory and largely non-functional, while the most posterior, the metanephros, persists as the adult kidney. We have explored the mechanisms underlying regional specific differentiation of the kidney forming mesoderm. Previous studies have shown a requirement for Hox11 paralogs (Hoxa11, Hoxc11 and Hoxd11) in metanephric development. Mice lacking all Hox11 activity fail to form metanephric kidney structures. We demonstrate that the Hox11 paralog expression is restricted in the intermediate mesoderm to the posterior, metanephric level. When Hoxd11 is ectopically activated in the anterior mesonephros, we observe a partial transformation to a metanephric program of development. Anterior Hoxd11+ cells activate Six2, a transcription factor required for the maintenance of metanephric tubule progenitors. Additionally, Hoxd11+ mesonephric tubules exhibit an altered morphology and activate several metanephric specific markers normally confined to distal portions of the functional nephron. Collectively, our data support a model where Hox11 paralogs specify a metanephric developmental program in responsive intermediate mesoderm. This program maintains tubule forming progenitors and instructs a metanephric specific pattern of nephron differentiation.

Original languageEnglish (US)
Pages (from-to)396-405
Number of pages10
JournalDevelopmental Biology
Volume319
Issue number2
DOIs
StatePublished - Jul 15 2008

Keywords

  • Hox genes
  • Hoxd11
  • Kidney
  • Mesonephros
  • Metanephros

ASJC Scopus subject areas

  • Molecular Biology
  • Developmental Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Hoxd11 specifies a program of metanephric kidney development within the intermediate mesoderm of the mouse embryo'. Together they form a unique fingerprint.

Cite this