Human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis

Nina K. Serwas, Birgit Hoeger, Rico C. Ardy, Sigrun V. Stulz, Zhenhua Sui, Nima Memaran, Marie Meeths, Ana Krolo, Özlem Yüce Petronczki, Laurène Pfajfer, Tie Z. Hou, Neil Halliday, Elisangela Santos-Valente, Artem Kalinichenko, Alan Kennedy, Emily M. Mace, Malini Mukherjee, Bianca Tesi, Anna Schrempf, Joanna I. LoizouRenate Kain, Bettina Bidmon-Fliegenschnee, Jean Nicolas Schickel, Salomé Glauzy, Jakob Huemer, Wojciech Garncarz, Elisabeth Salzer, Iro Pierides, Ivan Bilic, Jens Thiel, Peter Priftakis, Pinaki P. Banerjee, Elisabeth Förster-Waldl, David Medgyesi, Wolf Dietrich Huber, Jordan S. Orange, Eric Meffre, David M. Sansom, Yenan T. Bryceson, Amnon Altman, Kaan Boztug

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Immune responses need to be controlled tightly to prevent autoimmune diseases, yet underlying molecular mechanisms remain partially understood. Here, we identify biallelic mutations in three patients from two unrelated families in differentially expressed in FDCP6 homolog (DEF6) as the molecular cause of an inborn error of immunity with systemic autoimmunity. Patient T cells exhibit impaired regulation of CTLA-4 surface trafficking associated with reduced functional CTLA-4 availability, which is replicated in DEF6-knockout Jurkat cells. Mechanistically, we identify the small GTPase RAB11 as an interactor of the guanine nucleotide exchange factor DEF6, and find disrupted binding of mutant DEF6 to RAB11 as well as reduced RAB11+CTLA-4+ vesicles in DEF6-mutated cells. One of the patients has been treated with CTLA-4-Ig and achieved sustained remission. Collectively, we uncover DEF6 as player in immune homeostasis ensuring availability of the checkpoint protein CTLA-4 at T-cell surface, identifying a potential target for autoimmune and/or cancer therapy.

Original languageEnglish (US)
Article number3106
JournalNature communications
Volume10
Issue number1
DOIs
StatePublished - Dec 1 2019

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis'. Together they form a unique fingerprint.

Cite this