Human omental-derived adipose stem cells increase ovarian cancer proliferation, migration, and chemoresistance

Aleksandra Nowicka, Frank C. Marini, Travis N. Solley, Paula B. Elizondo, Yan Zhang, Hadley J. Sharp, Russell Broaddus, Mikhail Kolonin, Samuel C. Mok, Melissa S. Thompson, Wendy A. Woodward, Karen Lu, Bahar Salimian, Deepak Nagrath, Ann H. Klopp

Research output: Contribution to journalArticlepeer-review

94 Scopus citations

Abstract

Objectives: Adipose tissue contains a population of multipotent adipose stem cells (ASCs) that form tumor stroma and can promote tumor progression. Given the high rate of ovarian cancer metastasis to the omental adipose, we hypothesized that omental-derived ASC may contribute to ovarian cancer growth and dissemination. Materials and Methods: We isolated ASCs from the omentum of three patients with ovarian cancer, with (O-ASC4, O-ASC5) and without (O-ASC1) omental metastasis. BM-MSCs, SQ-ASCs, O-ASCs were characterized with gene expression arrays and metabolic analysis. Stromal cells effects on ovarian cancer cells proliferation, chemoresistance and radiation resistance was evaluated using co-culture assays with luciferase-labeled human ovarian cancer cell lines. Transwell migration assays were performed with conditioned media from O-ASCs and control cell lines. SKOV3 cells were intraperitionally injected with or without O-ASC1 to track in-vivo engraftment. Results: O-ASCs significantly promoted in vitro proliferation, migration chemotherapy and radiation response of ovarian cancer cell lines. O-ASC4 had more marked effects on migration and chemotherapy response on OVCA 429 and OVCA 433 cells than O-ASC1. Analysis of microarray data revealed that O-ASC4 and O-ASC5 have similar gene expression profiles, in contrast to O-ASC1, which was more similar to BM-MSCs and subcutaneous ASCs in hierarchical clustering. Human O-ASCs were detected in the stroma of human ovarian cancer murine xenografts but not uninvolved ovaries. Conclusions: ASCs derived from the human omentum can promote ovarian cancer proliferation, migration, chemoresistance and radiation resistance in-vitro. Furthermore, clinical O-ASCs isolates demonstrate heterogenous effects on ovarian cancer in-vitro.

Original languageEnglish (US)
Article numbere81859
JournalPloS one
Volume8
Issue number12
DOIs
StatePublished - Dec 2 2013

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General

MD Anderson CCSG core facilities

  • Advanced Technology Genomics Core
  • Research Animal Support Facility
  • Tissue Biospecimen and Pathology Resource
  • Cytogenetics and Cell Authentication Core
  • Clinical Trials Office

Fingerprint

Dive into the research topics of 'Human omental-derived adipose stem cells increase ovarian cancer proliferation, migration, and chemoresistance'. Together they form a unique fingerprint.

Cite this