Hypoxia-associated factor (HAF) mediates neurofibromin ubiquitination and degradation leading to Ras–ERK pathway activation in hypoxia

Yangsook Song Green, Timothy Sargis, Ethan Conrad Reichert, Eleanor Rudasi, Daniel Fuja, Eric Jonasch, Mei Yee Koh

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Low oxygen or hypoxia is a feature of all solid tumors and has been associated with aggressive disease. Here, we describe a novel mechanism for the hypoxia-dependent degradation of the Ras-GTPase–activating protein neurofibromin, by hypoxia-associated factor (HAF). We have previously characterized HAF as an oxygen-independent ubiquitin ligase for HIF-1a. Here, we show that HAF promotes neurofibromin ubiquitination and degradation independently of oxygen and pVHL, resulting in Ras–ERK pathway activation. Hypoxia enhanced HAF:neurofibromin binding independently of HAF-SUMOylation, whereas HAF knockdown increased neurofibromin levels primarily in hypoxia, supporting the role of HAF as a hypoxia-specific neurofibromin regulator. HAF overexpression increased p-ERK levels and promoted resistance of clear cell kidney cancer (ccRCC) cells to sorafenib and sunitinib in both normoxia and hypoxia. However, a greater-fold increase in sorafenib/sunitinib resistance was observed during hypoxia, particularly in pVHL-deficient cells. Intriguingly, HAF-mediated resistance was HIF-2a–dependent in normoxia, but HIF-2a–independent in hypoxia indicating two potential mechanisms of HAF-mediated resistance: a HIF-2a–dependent pathway dominant in normoxia, and the direct activation of the Ras–ERK pathway through neurofibromin degradation dominant in hypoxia. Patients with ccRCC with high HAF transcript or protein levels showed significantly decreased overall survival compared with those with low HAF. Thus, we establish a novel, nonmutational pathway of neurofibromin inactivation through hypoxia-induced HAF-mediated degradation, leading to Ras–ERK activation and poor prognosis in ccRCC.

Original languageEnglish (US)
Pages (from-to)1220-1232
Number of pages13
JournalMolecular Cancer Research
Volume17
Issue number5
DOIs
StatePublished - May 2019

ASJC Scopus subject areas

  • Molecular Biology
  • Oncology
  • Cancer Research

MD Anderson CCSG core facilities

  • Advanced Technology Genomics Core
  • Tissue Biospecimen and Pathology Resource
  • Cytogenetics and Cell Authentication Core

Fingerprint

Dive into the research topics of 'Hypoxia-associated factor (HAF) mediates neurofibromin ubiquitination and degradation leading to Ras–ERK pathway activation in hypoxia'. Together they form a unique fingerprint.

Cite this