Identification and in vitro expansion of CD4+ and CD8 + T cells specific for human neutrophil elastase

Hiroshi Fujiwara, Frank El Ouriaghli, Matthias Grube, David A. Price, Katayoun Rezvani, Emma Gostick, Giuseppe Sconocchia, Jos Melenhorst, Nancy Hensel, Daniel C. Douek, A. John Barrett

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

Human neutrophil elastase (HNE) and proteinase 3 (PRO3) are myeloid tissue-restricted serine proteases, aberrantly expressed by myeloid leukemia cells. PRO3 and HNE share the PR1 peptide sequence that induces HLA-A*0201-restricted cytotoxic T cells (CTLs) with antileukemia reactivity. We studied the entire HNE protein for its ability to induce CTLs. In an 18-hour culture, HNE-loaded monocytes stimulated significant intracellular interferon γ (IFN-γ) production by CD4+ and CD8+ T cells in 12 of 20 and 8 of 20 healthy individuals, respectively. Lymphocytes from 2 HNE responders were pulsed weekly for 4 weeks to generate HNE-specific CTLs. One of 2 HLA-A*0201-negative individuals inhibited the colony formation of HLA-identical chronic myelogenous leukemia progenitor cells (73% inhibition at 50:1 effector-target [E/T] ratio), indicating that peptides other than PR1 can induce leukemia-reactive CTLs. Repetitive stimulations with HNE in 2 of 5 HLA-A*0201+ individuals increased PR1 tetramer-positive CD8+ T-cell frequencies from 0.1% to 0.29% and 0.02% to 0.55%, respectively. These CTLs recognized PR1 peptide or killed HNE-loaded targets. These results indicate that exogenously processed HNE is a source of PR1 peptide as well as other peptide sequences capable of inducing leukemia-specific CD8+ and CD4+ T cells. HNE could, therefore, be used in an HLA-unrestricted manner to induce leukemia-reactive CTLs for adoptive immunotherapy.

Original languageEnglish (US)
Pages (from-to)3076-3083
Number of pages8
JournalBlood
Volume103
Issue number8
DOIs
StatePublished - Apr 15 2004

ASJC Scopus subject areas

  • Biochemistry
  • Immunology
  • Hematology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Identification and in vitro expansion of CD4+ and CD8 + T cells specific for human neutrophil elastase'. Together they form a unique fingerprint.

Cite this