Identification of an Association of TNFAIP3 Polymorphisms with Matrix Metalloproteinase Expression in Fibroblasts in an Integrative Study of Systemic Sclerosis-Associated Genetic and Environmental Factors

Peng Wei, Yang Yang, Xinjian Guo, Nainan Hei, Syeling Lai, Shervin Assassi, Mengyuan Liu, Filemon Tan, Xiaodong Zhou

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Objective Systemic sclerosis (SSc) is a fibrotic disease attributed to both genetic susceptibility and environmental factors. This study was undertaken to investigate the associations between SSc-associated genetic variants and the expression of extracellular matrix (ECM) genes in human fibroblasts stimulated with silica particles in time-course and dose-response experiments. Methods A total of 200 fibroblast strains were examined for ECM gene expression after stimulation with silica particles. The fibroblasts were genetically profiled using Immunochip assays and then subjected to whole-genome genotype imputation. Associations of genotypes and gene expression were first analyzed in a Caucasian cohort and then validated in a meta-analysis combining the results from Caucasian, African American, and Hispanic subjects. A linear mixed model for longitudinal data analysis was used to identify genetic variants associated with the expression of ECM genes, and the associations were validated by using a haplotype-based longitudinal association test on regions that included the loci identified. Results The single-nucleotide polymorphism rs58905141 in TNFAIP3 was consistently associated with time-course and/or dose-response expression of MMP3 and MMP1 in the fibroblasts stimulated with silica particles in both the analysis of Caucasian subjects only and the meta-analysis. Results of the haplotype-based analysis validated the association signals. Conclusion Our findings indicate that a genetic variant of TNFAIP3 is strongly associated with the silica-induced profibrotic response of fibroblasts. In silico functional analysis based on the ENCODE database revealed that rs58905141 might affect the binding activities of the transcription factors for TNFAIP3. This is the first genome-wide study of interactions between genetic and environmental factors in a complex SSc fibroblast model.

Original languageEnglish (US)
Pages (from-to)749-760
Number of pages12
JournalArthritis and Rheumatology
Volume68
Issue number3
DOIs
StatePublished - Mar 1 2016

ASJC Scopus subject areas

  • Immunology and Allergy
  • Rheumatology
  • Immunology

Fingerprint

Dive into the research topics of 'Identification of an Association of TNFAIP3 Polymorphisms with Matrix Metalloproteinase Expression in Fibroblasts in an Integrative Study of Systemic Sclerosis-Associated Genetic and Environmental Factors'. Together they form a unique fingerprint.

Cite this