Identification of the Benzoimidazole Compound as a Selective FLT3 Inhibitor by Cell-Based High-Throughput Screening of a Diversity Library

Tian Tian, Shengyi Zhang, Bingling Luo, Feng Yin, Wenhua Lu, Yiqing Li, Kezhi Huang, Qiao Liu, Peng Huang, G. Garcia-Manero, Shijun Wen, Yumin Hu

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Internal tandem duplication in the FLT3 receptor tyrosine kinase (FLT3/ITD mutation) occurs in approximately 25% of acute myeloid leukemia (AML) patients. To specifically target this driver mutation in AML, we assessed and compared the cell-based cytotoxicity of a diversity library (10,000 compounds) against the normal cell line BaF3 and the isogenic leukemic cell line BaF3/ITD. A benzoimidazole scaffold-based compound (HP1142) was identified as the most selective compound against a series of murine and human leukemia cells with FLT3/ITD. Novel benzoimidazole compounds were further designed to improve the aqueous solubility of HP1142. The most potent compound, HP1328, demonstrated desirable pharmaceutical and pharmacokinetic properties. Treatment with HP1328 significantly reduced the leukemia burden and prolonged the survival of mice with FLT3/ITD leukemia. Our findings establish the specific activity of the benzoimidazole compound against FLT3/ITD leukemia and warrant further investigation in this subset of leukemia patients with poor prognosis.

Original languageEnglish (US)
Pages (from-to)3597-3605
Number of pages9
JournalJournal of Medicinal Chemistry
Volume65
Issue number4
DOIs
StatePublished - Feb 24 2022
Externally publishedYes

ASJC Scopus subject areas

  • Molecular Medicine
  • Drug Discovery

Fingerprint

Dive into the research topics of 'Identification of the Benzoimidazole Compound as a Selective FLT3 Inhibitor by Cell-Based High-Throughput Screening of a Diversity Library'. Together they form a unique fingerprint.

Cite this