Identification of the catalytically important histidine of 3-hydroxy-3-methylglutaryl-coenzyme a reductase

Bryant G. Darnay

Research output: Contribution to journalArticlepeer-review

55 Scopus citations

Abstract

We identify His381 of Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase as the basic residue functional in catalysis. The catalytic domain of 20 HMG-CoA reductases contains a single conserved histidine (His381 of the P. mevalonii enzyme). Diethyl pyrocarbonate inactivated the P. mevalonii enzyme, and hydroxylamine partially restored activity. We changed His381 to alanine, lysine, asparagine, and glutamine. The mutant proteins were overexpressed, purified to homogeneity, and characterized. His381 mutant enzymes were not inactivated by diethyl pyrocarbonate. All four mutant enzymes exhibited wild-type crystal morphology and chromatographed on substrate affinity supports like wild-type enzyme. The mutant enzymes had low catalytic activity (Vmax 0.06-0.5% that of wild-type enzyme), but Km values approximated those for wild-type enzyme. For wild-type enzyme and mutant enzymes H381A, H381N, and H381Q, Km values at pH 8.1 were 0.45, 0.27,3.7, and 0.71 mM [(-R,S)-mevalonate]; 0.05, 0.03, 0.20, and 0.11 mM [coenzyme A]; 0.22, 0.14, 0.81, and 0.62 mM [NAD+]. Km values at pH 11 for wild-type enzyme and mutant enzyme H381K were 0.32 and 0.75 mM [(R,S)-mevalonate]; 0.24 and 0.50 mM [coenzyme A]; 0.15 and 1.23 mM [NAD+]. Both pK values for the enzyme-substrate complex increased relative to wild-type enzyme (by 1-2.5 pH units for pK1 and by 0.5-1.3 pH units for pK2). For mutant enzyme H381K, the pK1 of 10.2 is consistent with lysine acting as a general base at high pH. His381 of P. mevalonii HMG-CoA reductase, and consequently the histidine of the consensus Leu-Val-Lys-Ser-His-Met-Xaa-Xaa-Asn-Arg-Ser motif of the catalytic domain of eukaryotic HMG-CoA reductases, thus is the general base functional in catalysis.

Original languageEnglish (US)
Pages (from-to)15064-15070
Number of pages7
JournalJournal of Biological Chemistry
Volume267
Issue number21
StatePublished - 1992

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Identification of the catalytically important histidine of 3-hydroxy-3-methylglutaryl-coenzyme a reductase'. Together they form a unique fingerprint.

Cite this