Improvement of dead time and decoding resolution for position-sensitive detectors using a fully dynamic approach of light collection

Hongdi Li, Chao Wang, Shaohui An, Hossain Baghaei, Yuxuan Zhang, Shitao Liu, Rocio Ramirez, Wai Hoi Wong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Photo-sensor sharing (multiple blocks or crystals) can achieve high-resolution position-sensitive detectors but it also increases the dead time and pileups for scintillation event detection. Several methods such as pulse-clipping and HYPER (high-yield-pileup-event-recovery) have been introduced to minimize the dead time and pileups with a trade-off of less scintillation light collection. However, collecting smaller number photoelectrons would increase the statistical error, which in a turn will decrease the decoding resolution. In this study, instead of applying the HYPER method to 3 Anger-signal (X, Y and E) simultaneously, we use an individual dynamic approach for each photo-sensor to maximize the scintillation light collection while it still has a capability of rejecting pileups. The photo-electron collection for one photo-sensor involving a current event decoding will not be disturbed until a new event is detected that also requires this photo-sensor for position-decoding. If a new event comes from an adjacent detector block only sharing one photo-sensor currently involving the previous event decoding, it may only disturb the light collection of this sharing photo-senor; hence only one photo-sensor creates a poor statistical error and the rest photo-sensors can still collect a large number of photo electrons with good statistics for the previous event to achieve a good decoding resolution. This paper compares the decoding results using pulse clipping and this new proposed fully dynamic approach at various count-rates for a regular position-sensitive block detector and a PMT-quadrant-sharing (PQS) block detector. To study the decoding resolution at various high count-rates, a pulse waveform library was built by recording a large number of pulses by a digital oscilloscope from a detector test-bench at a low count-rate first and then boost to different high count-rates by software generated Poisson event time sequence. The result shows this fully dynamic approach reduces the dead space of PQS detectors by x2.25 without increasing the statistical noise.

Original languageEnglish (US)
Title of host publicationIEEE Nuclear Science Symposuim and Medical Imaging Conference, NSS/MIC 2010
Pages3133-3136
Number of pages4
DOIs
StatePublished - 2010
Event2010 IEEE Nuclear Science Symposium, Medical Imaging Conference, NSS/MIC 2010 and 17th International Workshop on Room-Temperature Semiconductor X-ray and Gamma-ray Detectors, RTSD 2010 - Knoxville, TN, United States
Duration: Oct 30 2010Nov 6 2010

Publication series

NameIEEE Nuclear Science Symposium Conference Record
ISSN (Print)1095-7863

Other

Other2010 IEEE Nuclear Science Symposium, Medical Imaging Conference, NSS/MIC 2010 and 17th International Workshop on Room-Temperature Semiconductor X-ray and Gamma-ray Detectors, RTSD 2010
Country/TerritoryUnited States
CityKnoxville, TN
Period10/30/1011/6/10

ASJC Scopus subject areas

  • Radiation
  • Nuclear and High Energy Physics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Improvement of dead time and decoding resolution for position-sensitive detectors using a fully dynamic approach of light collection'. Together they form a unique fingerprint.

Cite this