In vivo demonstration and quantification of intracellular Bacillus anthracis in lung epithelial cells

Brooke H. Russell, Qing Liu, Sarah A. Jenkins, Michael J. Tuvim, Burton F. Dickey, Yi Xu

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Inhalational anthrax is initiated by the entry of Bacillus anthracis spores into the lung. A critical early event in the establishment of an infection is the dissemination of spores from the lung. Using in vitro cell culture assays, we previously demonstrated that B. anthracis spores are capable of entering into epithelial cells of the lung and crossing a barrier of lung epithelial cells without apparent disruption of the barrier integrity, suggesting a novel portal for spores to disseminate from the lung. However, in vivo evidence for spore uptake by epithelial cells has been lacking. Here, using a mouse model, we present evidence that B. anthracis spores are taken up by lung epithelial cells in vivo soon after spores are delivered into the lung. Immunofluorescence staining of thin sections of lungs from spore-challenged BALB/c mice revealed that spores were associated with the epithelial surfaces in the airway and the alveoli at 2 and 4 h postinoculation. Confocal analysis further indicated that some of the associated spores were surrounded by F-actin, demonstrating intracellular localization. These observations were further confirmed and substantiated by a quantitative method that first isolated lung cells from spore-challenged mice and then stained these cells with antibodies specific for epithelial cells and spores. The results showed that substantial amounts of spores were taken up by lung epithelial cells in vivo. These data, combined with those in our previous reports, provided powerful evidence that the lung epithelia were directly targeted by B. anthracis spores at early stages of infection.

Original languageEnglish (US)
Pages (from-to)3975-3983
Number of pages9
JournalInfection and Immunity
Volume76
Issue number9
DOIs
StatePublished - Sep 2008

ASJC Scopus subject areas

  • Parasitology
  • Microbiology
  • Immunology
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'In vivo demonstration and quantification of intracellular Bacillus anthracis in lung epithelial cells'. Together they form a unique fingerprint.

Cite this