Inactivation of G-protein-coupled receptor 48 (Gpr48/Lgr4) impairs definitive erythropoiesis at midgestation through down-regulation of the ATF4 signaling pathway

Huiping Song, Jian Luo, Weijia Luo, Jinsheng Weng, Zhiqiang Wang, Baoxing Li, Dali Li, Mingyao Liu

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

G-protein-coupled receptors (GPCRs), one of the most versatile groups of cell surface receptors, can recognize specific ligands from neural, hormonal, and paracrine organs and regulate cell growth, proliferation, and differentiation. Gpr48/LGR4 is a recently identified orphan GPCR with unknown functions. To reveal the functions of Gpr48 in vivo, we generated Gpr48 -/- mice and found that Gpr48-/- fetuses displayed transient anemia during midgestation and abnormal definitive erythropoiesis. The dramatic decrease of definitive erythroid precursors (Ter119pos population) in Gpr48-/- fetal liver at E13.5 was confirmed by histological analysis and blood smear assays. Real-time PCR analyses showed that in Gpr48-/- mice both adult hemoglobin α and β chains were decreased while embryonic hemoglobin chains (ζ, βH1, and εy) were increased, providing another evidence for the impairment of definitive erythropoiesis. Furthermore, proliferation was suppressed in Gpr48-/- fetal liver with decreased c-Myc and cyclin D1 expression, whereas apoptosis was unaffected. ATF4, a key transcription factor in erythropoiesis, was downregulated in Gpr48-/- fetal livers during midgestation stage through the cAMP-PKA-CREB pathway, suggesting that Gpr48 regulated definitive erythropoiesis through ATF4-mediated definitive erythropoiesis.

Original languageEnglish (US)
Pages (from-to)36687-36697
Number of pages11
JournalJournal of Biological Chemistry
Volume283
Issue number52
DOIs
StatePublished - Dec 26 2008
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Inactivation of G-protein-coupled receptor 48 (Gpr48/Lgr4) impairs definitive erythropoiesis at midgestation through down-regulation of the ATF4 signaling pathway'. Together they form a unique fingerprint.

Cite this