Inferring phenotypic properties from single-cell characteristics

Peng Qiu

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Flow cytometry provides multi-dimensional data at the single-cell level. Such data contain information about the cellular heterogeneity of bulk samples, making it possible to correlate single-cell features with phenotypic properties of bulk tissues. Predicting phenotypes from single-cell measurements is a difficult challenge that has not been extensively studied. The 6th Dialogue for Reverse Engineering Assessments and Methods (DREAM6) invited the research community to develop solutions to a computational challenge: classifying acute myeloid leukemia (AML) positive patients and healthy donors using flow cytometry data. DREAM6 provided flow cytometry data for 359 normal and AML samples, and the class labels for half of the samples. Researchers were asked to predict the class labels of the remaining half. This paper describes one solution that was constructed by combining three algorithms: spanning-tree progression analysis of density-normalized events (SPADE), earth mover's distance, and a nearest-neighbor classifier called Relief. This solution was among the top-performing methods that achieved 100% prediction accuracy.

Original languageEnglish (US)
Article numbere37038
JournalPloS one
Volume7
Issue number5
DOIs
StatePublished - May 25 2012

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General

Fingerprint

Dive into the research topics of 'Inferring phenotypic properties from single-cell characteristics'. Together they form a unique fingerprint.

Cite this