Interleukin-17 and lung host defense against klebsiella pneumoniae infection

P. Ye, P. B. Garvey, P. Zhang, S. Nelson, G. Bagby, W. R. Summer, P. Schwarzenberger, J. E. Shellito, J. K. Kolls

Research output: Contribution to journalArticlepeer-review

404 Scopus citations

Abstract

Bacterial pneumonia remains an important cause of morbidity and mortality worldwide, especially in immune-compromised patients. Cytokines and chemokines are critical molecules expressed in response to invading pathogens and are necessary for normal lung bacterial host defenses. Here we show that interleukin (IL)-17, a novel cytokine produced largely by CD4+ T cells, is produced in a compartmentalized fashion in the lung after challenge with Klebsiella pneumoniae. Moreover, overexpression of IL-17 in the pulmonary compartment using a recombinant adenovirus encoding murine IL-17 (AdIL-17) resulted in the local induction of tumor necrosis factor-α, IL-1β, macrophage inflammatory protein-2, and granulocyte colony-stimulating factor (G-CSF); augmented polymorphonuclear leukocyte recruitment; and enhanced bacterial clearance and survival after challenge with K. pneumoniae. However, simultaneous treatment with AdIL-17 provided no survival benefit after intranasal K. pneumoniae challenge. These data show that IL-17 may have a role in priming for enhanced chemokine and G-CSF production in the context of lung infection and that optimally timed gene therapy with IL-17 may augment host defense against bacterial pneumonia.

Original languageEnglish (US)
Pages (from-to)335-340
Number of pages6
JournalAmerican journal of respiratory cell and molecular biology
Volume25
Issue number3
DOIs
StatePublished - 2001
Externally publishedYes

ASJC Scopus subject areas

  • Molecular Biology
  • Pulmonary and Respiratory Medicine
  • Clinical Biochemistry
  • Cell Biology

Fingerprint

Dive into the research topics of 'Interleukin-17 and lung host defense against klebsiella pneumoniae infection'. Together they form a unique fingerprint.

Cite this