Interleukin-2: Old and new approaches to enhance immune-therapeutic efficacy

Pooja Dhupkar, Nancy Gordon

Research output: Chapter in Book/Report/Conference proceedingChapter

54 Scopus citations

Abstract

Interleukin-2 (IL-2) is a very well-known cytokine that has been studied for the past 35 years. It plays a major role in the growth and proliferation of many immune cells such NK and T cells. It is an important immunotherapy cytokine for the treatment of various diseases including cancer. Systemic delivery of IL-2 has shown clinical benefit in renal cell carcinoma and melanoma patients. However, its use has been limited by the numerous toxicities encountered with the systemic delivery. Intravenous IL-2 causes the well-known “capillary leak syndrome,” or the leakage of fluid from the circulatory system to the interstitial space resulting in hypotension (low blood pressure), edema, and dyspnea that can lead to circulatory shock and eventually cardiopulmonary collapse and multiple organ failure. Due to the toxicities associated with systemic IL-2, an aerosolized delivery approach has been developed, which enables localized delivery and a higher local immune cell activation. Since proteins are absorbed via pulmonary lymphatics, after aerosol deposition in the lung, aerosol delivery provides a means to more specifically target IL-2 to the local immune system in the lungs with less systemic effects. Its benefits have extended to diseases other than cancer. Delivery of IL-2 via aerosol or as nebulized IL-2 liposomes has been previously shown to have less toxicity and higher efficacy against sarcoma lung metastases. Dogs with cancer provided a highly relevant means to determine biodistribution of aerosolized IL-2 and IL-2 liposomes. However, efficacy of single-agent IL-2 is limited. As in general, for most immune-therapies, its effect is more beneficial in the face of minimal residual disease. To overcome this limitation, combination therapies using aerosol IL-2 with adoptive transfer of T cells or NK cells have emerged. Using a human osteosarcoma (OS) mouse model, we have demonstrated the efficacy of single-agent aerosol IL-2 and combination therapy aerosol IL-2 and NK cells or aerosol IL-2 and interleukin 11 receptor alpha-directed chimeric antigen receptor-T cells (IL-11 receptor α CAR-T cells) against OS pulmonary metastases. Combination therapy resulted in a better therapeutic effect. A Phase-I trial of aerosol IL-2 was done in Europe and proved to be safe. Others and our preclinical studies provided the basis for the development of a Phase-I aerosol IL-2 trial in our institution to include younger patients with lung metastases. OS, our disease of interest, has a peak incidence in the adolescent and young adult years. Our goal is to complete this trial in the next 2 years. In this chapter, we summarize the different effects of IL-2 and cover the advantages of the aerosol delivery route for diseases of the lung with an emphasis on some of our most recent work using combination therapy aerosol IL-2 and NK cells for the treatment of OS lung metastases.

Original languageEnglish (US)
Title of host publicationAdvances in Experimental Medicine and Biology
PublisherSpringer New York LLC
Pages33-51
Number of pages19
DOIs
StatePublished - 2017

Publication series

NameAdvances in Experimental Medicine and Biology
Volume995
ISSN (Print)0065-2598
ISSN (Electronic)2214-8019

Keywords

  • Aerosol IL-2
  • IL-2 clinical trial
  • Immunotherapy
  • Lung metastasis
  • NK cell therapy
  • Osteosarcoma

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Interleukin-2: Old and new approaches to enhance immune-therapeutic efficacy'. Together they form a unique fingerprint.

Cite this