Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging

Matilde Cescon, Peiwen Chen, Silvia Castagnaro, Ilaria Gregorio, Paolo Bonaldo

Research output: Contribution to journalArticlepeer-review

60 Scopus citations

Abstract

Collagen VI is an extracellular matrix (ECM) protein with a broad distribution in different tissues and mostly deposited at the close periphery of the cell surface. Previous studies revealed that collagen VI protects neurons from the toxicity of amyloid-βpeptides and from UV-induced damage. However, the physiological role of this protein in the central nervous system (CNS) remains unknown. Here, we established primary neural cultures from murine cortex and hippocampus, and carried out in vitro and in vivo studies in wild-type and collagen VI null (Col6a1-/-) mice. Col6a1-/- neural cultures displayed an increased incidence of spontaneous apoptosis and higher vulnerability to oxidative stress, accompanied by altered regulation of autophagy with increased p62 protein levels and decreased LC3 lipidation. Analysis of brain sections confirmed increased apoptosis and abnormal regulation of autophagy in the CNS of collagen VI-deficient animals. To investigate the in vivo physiological consequences of these CNS defects, we carried out functional studies and found that motor and memory task performances were impaired in aged Col6a1-/- mice. These findings indicate that lack of collagen VI leads to spontaneous apoptosis and defective autophagy in neural cells, and point at a protective role for this ECM protein in the CNS during physiological aging.

Original languageEnglish (US)
Pages (from-to)1083-1101
Number of pages19
JournalAging
Volume8
Issue number5
DOIs
StatePublished - 2016

Keywords

  • Aging brain
  • Apoptosis
  • Autophagy
  • Collagen VI
  • Extracellular matrix

ASJC Scopus subject areas

  • Aging
  • Cell Biology

Fingerprint

Dive into the research topics of 'Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging'. Together they form a unique fingerprint.

Cite this