Light evokes rapid circadian network oscillator desynchrony followed by gradual phase retuning of synchrony

Logan Roberts, Tanya L. Leise, Takako Noguchi, Alexis M. Galschiodt, Jerry H. Houl, David K. Welsh, Todd C. Holmes

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

Circadian neural circuits generate near 24-hr physiological rhythms that can be entrained by light to coordinate animal physiology with daily solar cycles. To examine how a circadian circuit reorganizes its activity in response to light, we imaged period (per) clock gene cycling for up to 6 days at single-neuron resolution in whole-brain explant cultures prepared from perluciferase transgenic flies. We compared cultures subjected to a phase-advancing light pulse (LP) to cultures maintained in darkness (DD). In DD, individual neuronal oscillators in all circadian subgroups are initially well synchronized but then show monotonic decrease in oscillator rhythm amplitude and synchrony with time. The small ventral lateral neurons (s-LNvs) and dorsal lateral neurons (LNds) exhibit this decrease at a slower relative rate. In contrast, the LP evokes a rapid loss of oscillator synchrony between and within most circadian neuronal subgroups, followed by gradual phase retuning of whole-circuit oscillator synchrony. The LNds maintain high rhythmic amplitude and synchrony following the LP along with the most rapid coherent phase advance. Immunocytochemical analysis of PER shows that these dynamics in DD and LP are recapitulated in vivo. Anatomically distinct circadian neuronal subgroups vary in their response to the LP, showing differences in the degree and kinetics of their loss, recovery and/or strengthening of synchrony, and rhythmicity. Transient desynchrony appears to be an integral feature of light response of the Drosophila multicellular circadian clock. Individual oscillators in different neuronal subgroups of the circadian circuit show distinct kinetic signatures of light response and phase retuning.

Original languageEnglish (US)
Pages (from-to)858-867
Number of pages10
JournalCurrent Biology
Volume25
Issue number7
DOIs
StatePublished - 2015
Externally publishedYes

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'Light evokes rapid circadian network oscillator desynchrony followed by gradual phase retuning of synchrony'. Together they form a unique fingerprint.

Cite this