Lysine Methyltransferase SMYD1 Regulates Myogenesis via skNAC Methylation

Li Zhu, Mark A. Brown, Robert J. Sims, Gayatri R. Tiwari, Hui Nie, R. Dayne Mayfield, Haley O. Tucker

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The SMYD family is a unique class of lysine methyltransferases (KMTases) whose catalytic SET domain is split by a MYND domain. Among these, Smyd1 was identified as a heart- and skeletal muscle-specific KMTase and is essential for cardiogenesis and skeletal muscle development. SMYD1 has been characterized as a histone methyltransferase (HMTase). Here we demonstrated that SMYD1 methylates is the Skeletal muscle-specific splice variant of the Nascent polypeptide-Associated Complex (skNAC) transcription factor. SMYD1-mediated methylation of skNAC targets K1975 within the carboxy-terminus region of skNAC. Catalysis requires physical interaction of SMYD1 and skNAC via the conserved MYND domain of SMYD1 and the PXLXP motif of skNAC. Our data indicated that skNAC methylation is required for the direct transcriptional activation of myoglobin (Mb), a heart- and skeletal muscle-specific hemoprotein that facilitates oxygen transport. Our study revealed that the skNAC, as a methylation target of SMYD1, illuminates the molecular mechanism by which SMYD1 cooperates with skNAC to regulate transcriptional activation of genes crucial for muscle functions and implicates the MYND domain of the SMYD-family KMTases as an adaptor to target substrates for methylation.

Original languageEnglish (US)
Article number1695
JournalCells
Volume12
Issue number13
DOIs
StatePublished - Jul 2023

Keywords

  • heart and skeletal muscle
  • methyltransferase
  • transcriptional regulation

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Lysine Methyltransferase SMYD1 Regulates Myogenesis via skNAC Methylation'. Together they form a unique fingerprint.

Cite this