MicroRNA-mediated loss of ADAR1 in metastatic melanoma promotes tumor growth

Yael Nemlich, Eyal Greenberg, Rona Ortenberg, Michal J. Besser, Iris Barshack, Jasmine Jacob-Hirsch, Elad Jacoby, Eran Eyal, Ludmila Rivkin, Victor G. Prieto, Nitin Chakravarti, Lyn M. Duncan, David M. Kallenberg, Eitan Galun, Dorothy C. Bennett, Ninette Amariglio, Menashe Bar-Eli, Jacob Schachter, Gideon Rechavi, Gal Markel

Research output: Contribution to journalArticlepeer-review

141 Scopus citations

Abstract

Some solid tumors have reduced posttranscriptional RNA editing by adenosine deaminase acting on RNA (ADAR) enzymes, but the functional significance of this alteration has been unclear. Here, we found the primary RNA-editing enzyme ADAR1 is frequently reduced in metastatic melanomas. In situ analysis of melanoma samples using progression tissue microarrays indicated a substantial downregulation of ADAR1 during the metastatic transition. Further, ADAR1 knockdown altered cell morphology, promoted in vitro proliferation, and markedly enhanced the tumorigenicity in vivo. A comparative whole genome expression microarray analysis revealed that ADAR1 controls the expression of more than 100 microRNAs (miRNAs) that regulate many genes associated with the observed phenotypes. Importantly, we discovered that ADAR1 fundamentally regulates miRNA processing in an RNA binding-dependent, yet RNA editing-independent manner by regulating Dicer expression at the translational level via let-7. In addition, ADAR1 formed a complex with DGCR8 that was mutually exclusive with the DGCR8-Drosha complex that processes pri-miRNAs in the nucleus. We found that cancer cells silence ADAR1 by overexpressing miR-17 and miR-432, which both directly target the ADAR1 transcript. We further demonstrated that the genes encoding miR-17 and miR-432 are frequently amplified in melanoma and that aberrant hypomethylation of the imprinted DLK1-DIO3 region in chromosome 14 can also drive miR-432 overexpression.

Original languageEnglish (US)
Pages (from-to)2703-2718
Number of pages16
JournalJournal of Clinical Investigation
Volume123
Issue number6
DOIs
StatePublished - Jun 3 2013

ASJC Scopus subject areas

  • General Medicine

MD Anderson CCSG core facilities

  • Clinical Trials Office

Fingerprint

Dive into the research topics of 'MicroRNA-mediated loss of ADAR1 in metastatic melanoma promotes tumor growth'. Together they form a unique fingerprint.

Cite this