Mitogen-activated protein kinase kinase inhibition enhances nuclear proapoptotic function of p53 in acute myelogenous leukemia cells

Kensuke Kojima, Marina Konopleva, Ismael J. Samudio, Vivian Ruvolo, Michael Andreeff

Research output: Contribution to journalArticlepeer-review

50 Scopus citations

Abstract

Activation of the Raf/MEK/ERK pathway and inactivation of wild-type p53 by Mdm2 overexpression are frequent molecular events in acute myelogenous leukemia (AML). We investigated the interaction of Raf/MEK/ERK and p53 pathways after their simultaneous blockades using a selective small-molecule antagonist of Mdm2, Nutlin-3a, and a pharmacologic MEK-specific inhibitor, PD98059. We found that PD98059, which itself has minimal apoptogenic activity, acts synergistically with Nutlin-3a to induce apoptosis in wild-type p53 AML cell lines OCI-AML-3 and MOLM-13. Interestingly, PD98059 enhanced nuclear proapototic function of p53 in these cells. In accordance with the activation of transcription-dependent apoptosis, PD98059 treatment promoted the translocation of p53 from the cytoplasm to the nucleus in OCI-AML-3 cells, in which p53 primarily initiates transcription-independent apoptosis when cells are treated with Nutlin-3a alone. The critical role of p53 localization in cells with increased p53 levels was supported by enhanced apoptosis induction in cells cotreated with Nutlin-3a and the nuclear export inhibitor leptomycin B. PD98059 prevented p53-mediated induction of p21 at the transcriptional level. The repressed expression of antiapototic p21 also seemed to contribute to synergism between PD98059 and Nutlin-3a because (a) the synergistic apoptogenic effect was preserved in G1 cells, (b) p53-mediated induction of p21 was preferentially seen in G1 cells, (c) PD98059 strongly antagonized p21 induction by Nutlin-3a, and (d) cells with high p21 levels were resistant to apoptosis. This is the first report showing that the Raf/MEK/ERK pathway regulates the subcellular localization of p53 and the relative contribution of transcription-dependent and transcription-independent pathways in p53-mediated apoptosis.

Original languageEnglish (US)
Pages (from-to)3210-3219
Number of pages10
JournalCancer Research
Volume67
Issue number7
DOIs
StatePublished - Apr 1 2007

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

MD Anderson CCSG core facilities

  • Flow Cytometry and Cellular Imaging Facility

Fingerprint

Dive into the research topics of 'Mitogen-activated protein kinase kinase inhibition enhances nuclear proapoptotic function of p53 in acute myelogenous leukemia cells'. Together they form a unique fingerprint.

Cite this