Mixed phenotype acute leukemia contains heterogeneous genetic mutations by next-generation sequencing

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

Mixed phenotype acute leukemia (MPAL) is an uncommon manifestation of acute leukemia. The aim of this study is to further characterize the genetic landscape of de novo cases of MPAL that fulfill the 2016 World Health Organization (WHO) classification criteria for this entity. We identified 14 cases examined by next generation sequencing (NGS) using 28 (n = 10), 53 (n = 3) or 81 (n = 1) gene panels: 7 cases with a B-cell/myeloid (B/My) immunophenotype, 6 T-cell/myeloid (T/My) immunophenotype, and 1 B-cell/T-cell (B/T) immunophenotype. A total of 25 distinct mutations were identified in 15 different genes in 9/14 (64%) patients. FLT3-ITD was the only recurrent mutation in 2 patients. B/My MPAL cases less commonly harbored mutations compared with T/My MPAL cases (43% vs. 100%, p = 0.07). In contrast, B/My MPALs more commonly showed a complex karyotype compared to T/My MPALs (71% vs. 17%, p = 0.1). With NGS and karyotype combined, most (93%) MPAL cases had mutations or cytogenetic abnormalities. With a median follow-up of 12.5 months, there were no significant differences in median overall survival (OS) between patients with B/My or T/My MPAL (17.8 and 6.5 months, respectively, p = 0.81) or between patients with MPAL with versus without gene mutations (6.5 and 13.3 months, respectively, p = 0.86). Our data suggest that the distinguishing cases of MPAL according to immunophenotype has value because the underlying mechanisms of leukemogenesis might differ between B/My and T/My MPAL.

Original languageEnglish (US)
Pages (from-to)8441-8449
Number of pages9
JournalOncotarget
Volume9
Issue number9
DOIs
StatePublished - 2018

Keywords

  • Leukemia
  • Mixed phenotype
  • Mutations
  • Sequencing

ASJC Scopus subject areas

  • Oncology

Fingerprint

Dive into the research topics of 'Mixed phenotype acute leukemia contains heterogeneous genetic mutations by next-generation sequencing'. Together they form a unique fingerprint.

Cite this