Molecular chaperones as inducers of tumour immunity

Research output: Chapter in Book/Report/Conference proceedingChapter

1 Scopus citations

Abstract

Introduction Tumour antigens can be broadly classified into four categories: (i) those that are expressed in larger quantities in tumours than their normal counterparts (e.g., tumour-associated carbohydrate antigens) [1], (ii) onco-fetal antigens (e.g., carcinoembryonic antigen) [2], (iii) differentiation antigens (e.g., melanoma differentiation antigen) [3, 4] and (iv) tumour-specific antigens. Tumour antigens in the first three categories could serve as useful markers for diagnostic and prognostic purposes. Although some of these antigens are being used in immunotherapy, none can be called tumour-specific in a true sense. Only the last group includes antigens that are truly specific for tumour cells, in that they contain tumour-specific mutations that are unique for individual tumours such as the tumour-specific point mutation that is found in cyclin-dependent kinase-4. Such a mutation gives rise to a novel antigenic epitope which can be recognised by cytotoxic T lymphocytes (CTLs) [5]. However, for these antigens to be of any value as therapeutic agents, they must be detected in and epitopes isolated from a large range of cancers, and this makes the general use of these antigens difficult. In the past two decades, evidence has accumulated to support the concept that molecular chaperones or heat shock proteins can be used as a potent source of cancer vaccines [6, 7]. Molecular chaperones, particularly those derived from the Hsp70 and Hsp90 families, are now being tested in the clinical arena for therapeutic efficacy against a range of cancers (Table 18.1).

Original languageEnglish (US)
Title of host publicationMolecular Chaperones and Cell Signalling
PublisherCambridge University Press
Pages300-317
Number of pages18
ISBN (Electronic)9780511546310
ISBN (Print)0521836549, 9780521836548
DOIs
StatePublished - Jan 1 2005
Externally publishedYes

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Molecular chaperones as inducers of tumour immunity'. Together they form a unique fingerprint.

Cite this