Moving toward disease modification in polycythemia vera

Jan Philipp Bewersdorf, Joan How, Lucia Masarova, Prithviraj Bose, Naveen Pemmaraju, John Mascarenhas, Raajit K. Rampal

Research output: Contribution to journalComment/debatepeer-review

3 Scopus citations

Abstract

Polycythemia vera (PV) belongs to the BCR-ABL1–negative myeloproliferative neoplasms and is characterized by activating mutations in JAK2 and clinically presents with erythrocytosis, variable degrees of systemic and vasomotor symptoms, and an increased risk of both thromboembolic events and progression to myelofibrosis and acute myeloid leukemia (AML). Treatment selection is based on a patient's age and a history of thrombosis in patients with low-risk PV treated with therapeutic phlebotomy and aspirin alone, whereas cytoreductive therapy with either hydroxyurea or interferon alfa (IFN-α) is added for high-risk disease. However, other disease features such as significant disease-related symptoms and splenomegaly, concurrent thrombocytosis and leukocytosis, or intolerance of phlebotomy can constitute an indication for cytoreductive therapy in patients with otherwise low-risk disease. Additionally, recent studies demonstrating the safety and efficacy (ie, reduction in phlebotomy requirements and molecular responses) of ropegylated IFN-α2b support its use for patients with low-risk PV. Additionally, emerging data suggest that early treatment is associated with higher rates of molecular responses, which might eventually enable time-limited therapy. Nonetheless, longer follow-up is needed to assess whether molecular responses associate with clinically meaningful outcome measures such as thrombosis and progression to myelofibrosis or AML. In this article, we provide an overview of the current and evolving treatment landscape of PV and outline our vision for a patient-centered, phlebotomy-free, treatment approach using time-limited, disease-modifying treatment modalities early in the disease course, which could ultimately affect the natural history of the disease.

Original languageEnglish (US)
Pages (from-to)1859-1870
Number of pages12
JournalBlood
Volume142
Issue number22
DOIs
StatePublished - Nov 30 2023

ASJC Scopus subject areas

  • Biochemistry
  • Immunology
  • Hematology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Moving toward disease modification in polycythemia vera'. Together they form a unique fingerprint.

Cite this