Myocardial Rev-erb-Mediated Diurnal Metabolic Rhythm and Obesity Paradox

Shiyang Song, Chih Liang Tien, Hao Cui, Paul Basil, Ningxia Zhu, Yingyun Gong, Wenbo Li, Hui Li, Qiying Fan, Jong Min Choi, Weijia Luo, Yanfeng Xue, Rui Cao, Wenjun Zhou, Andrea R. Ortiz, Brittany Stork, Vatsala Mundra, Nagireddy Putluri, Brian York, Maoping ChuJiang Chang, Sung Yun Jung, Liang Xie, Jiangping Song, Lilei Zhang, Zheng Sun

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Background: The nuclear receptor Rev-erbα/β, a key component of the circadian clock, emerges as a drug target for heart diseases, but the function of cardiac Rev-erb has not been studied in vivo. Circadian disruption is implicated in heart diseases, but it is unknown whether cardiac molecular clock dysfunction is associated with the progression of any naturally occurring human heart diseases. Obesity paradox refers to the seemingly protective role of obesity for heart failure, but the mechanism is unclear. Methods: We generated mouse lines with cardiac-specific Rev-erbα/β knockout (KO), characterized cardiac phenotype, conducted multi-omics (RNA-sequencing, chromatin immunoprecipitation sequencing, proteomics, and metabolomics) analyses, and performed dietary and pharmacological rescue experiments to assess the time-of-the-day effects. We compared the temporal pattern of cardiac clock gene expression with the cardiac dilation severity in failing human hearts. Results: KO mice display progressive dilated cardiomyopathy and lethal heart failure. Inducible ablation of Rev-erbα/β in adult hearts causes similar phenotypes. Impaired fatty acid oxidation in the KO myocardium, in particular, in the light cycle, precedes contractile dysfunctions with a reciprocal overreliance on carbohydrate utilization, in particular, in the dark cycle. Increasing dietary lipid or sugar supply in the dark cycle does not affect cardiac dysfunctions in KO mice. However, obesity coupled with systemic insulin resistance paradoxically ameliorates cardiac dysfunctions in KO mice, associated with rescued expression of lipid oxidation genes only in the light cycle in phase with increased fatty acid availability from adipose lipolysis. Inhibition of glycolysis in the light cycle and lipid oxidation in the dark cycle, but not vice versa, ameliorate cardiac dysfunctions in KO mice. Altered temporal patterns of cardiac Rev-erb gene expression correlate with the cardiac dilation severity in human hearts with dilated cardiomyopathy. Conclusions: The study delineates temporal coordination between clock-mediated anticipation and nutrient-induced response in myocardial metabolism at multi-omics levels. The obesity paradox is attributable to increased cardiac lipid supply from adipose lipolysis in the fasting cycle due to systemic insulin resistance and adiposity. Cardiac molecular chronotypes may be involved in human dilated cardiomyopathy. Myocardial bioenergetics downstream of Rev-erb may be a chronotherapy target in treating heart failure and dilated cardiomyopathy.

Original languageEnglish (US)
Pages (from-to)448-464
Number of pages17
JournalCirculation
Volume145
Issue number6
DOIs
StatePublished - Feb 8 2022
Externally publishedYes

Keywords

  • cardiomyopathy, dilated
  • circadian clocks
  • diet, high-fat
  • heart failure
  • lipid metabolism
  • obesity

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Myocardial Rev-erb-Mediated Diurnal Metabolic Rhythm and Obesity Paradox'. Together they form a unique fingerprint.

Cite this