NAMPT Inhibition Induces Neuroblastoma Cell Death and Blocks Tumor Growth

Frederic A. Vallejo, Anthony Sanchez, Branko Cuglievan, Winston M. Walters, Guillermo De Angulo, Steven Vanni, Regina M. Graham

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

High-risk neuroblastoma (NB) portends very poor prognoses in children. Targeting tumor metabolism has emerged as a novel therapeutic strategy. High levels of nicotinamide-adenine-dinucleotide (NAD+) are required for rapid cell proliferation. Nicotinamide phosphoribosyl transferase (NAMPT) is the rate-limiting enzyme for NAD+ salvage and is overexpressed in several cancers. Here, we determine the potential of NAMPT as a therapeutic target for NB treatment. NAMPT inhibition cytotoxicity was determined by trypan blue exclusion and LDH assays. Neuroblastoma stem cell self-renewal was evaluated by neurosphere assay. Protein expression was evaluated via Western blot. The effect of targeting NAMPT in vivo was determined using an NB1691-xenografted mouse model. Robust NAMPT expression was demonstrated in multiple N-MYC amplified, high-risk neuroblastoma cell lines. NAMPT inhibition with STF-118804 (STF) decreased ATP, induced apoptosis, and reduced NB stem cell neurosphere formation. STF treatment down-regulated N-MYC levels and abrogated AKT activation. AKT and glycolytic pathway inhibitors in combination with NAMPT inhibition induced robust, greater-than-additive neuroblastoma cell death. Lastly, STF treatment blocked neuroblastoma tumor growth in mouse xenograft models. NAMPT is a valid therapeutic target as inhibition promoted neuroblastoma cell death in vitro and prevented tumor growth in vivo. Further investigation is warranted to establish this therapy’s role as an adjunctive modality.

Original languageEnglish (US)
Article number883318
JournalFrontiers in Oncology
Volume12
DOIs
StatePublished - Jun 23 2022

Keywords

  • Glycolysis
  • metabolism
  • N-MYC
  • NAD
  • NAMPT (Nicotinamide Phosphoribosyltransferase)
  • neuroblastoma
  • precision medicine

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'NAMPT Inhibition Induces Neuroblastoma Cell Death and Blocks Tumor Growth'. Together they form a unique fingerprint.

Cite this