Navigation and Robotics in Interventional Oncology: Current Status and Future Roadmap

Georgios Charalampopoulos, Reto Bale, Dimitrios Filippiadis, Bruno C. Odisio, Bradford Wood, Luigi Solbiati

Research output: Contribution to journalReview articlepeer-review

Abstract

Interventional oncology (IO) is the field of Interventional Radiology that provides minimally invasive procedures under imaging guidance for the diagnosis and treatment of malignant tumors. Sophisticated devices can be utilized to increase standardization, accuracy, outcomes, and “repeatability” in performing percutaneous Interventional Oncology techniques. These technologies can reduce variability, reduce human error, and outperform human hand-to-eye coordination and spatial relations, thus potentially normalizing an otherwise broad diversity of IO techniques, impacting simulation, training, navigation, outcomes, and performance, as well as verification of desired minimum ablation margin or other measures of successful procedures. Stereotactic navigation and robotic systems may yield specific advantages, such as the potential to reduce procedure duration and ionizing radiation exposure during the procedure and, at the same time, increase accuracy. Enhanced accuracy, in turn, is linked to improved outcomes in many clinical scenarios. The present review focuses on the current role of percutaneous navigation systems and robotics in diagnostic and therapeutic Interventional Oncology procedures. The currently available alternatives are presented, including their potential impact on clinical practice as reflected in the peer-reviewed medical literature. A review of such data may inform wiser investment of time and resources toward the most impactful IR/IO applications of robotics and navigation to both standardize and address unmet clinical needs.

Original languageEnglish (US)
Article number98
JournalDiagnostics
Volume14
Issue number1
DOIs
StatePublished - Jan 2024

Keywords

  • ablation
  • biopsy
  • navigation
  • robotics

ASJC Scopus subject areas

  • Clinical Biochemistry

Fingerprint

Dive into the research topics of 'Navigation and Robotics in Interventional Oncology: Current Status and Future Roadmap'. Together they form a unique fingerprint.

Cite this