New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging

Ketan B. Ghaghanda, Murall Ravoori, Divya Sabapathy, James Bankson, Vikas Kundra, Ananth Annapraganda

Research output: Contribution to journalArticlepeer-review

89 Scopus citations

Abstract

Background: Liposomal-based gadolinium (Gd) nanoparticles have elicited significant interest for use as blood pool and molecular magnetic resonance imaging (MRI) contrast agents. Previous generations of liposomal MR agents contained gadolinium-chelates either within the interior of liposomes (core-encapsulated gadolinium liposomes) or presented on the surface of liposomes (surface-conjugated gadolinium liposomes). We hypothesized that a liposomal agent that contained both core-encapsulated gadolinium and surface-conjugated gadolinium, defined herein as dual-mode gadolinium (Dual-Gd) liposomes, would result in a significant improvement in nanoparticle-based T1 relaxivity over the previous generations of liposomal agents. In this study, we have developed and tested, both in vitro and in vivo, such a dual-mode liposomal-based gadolinium contrast agent. Methodology/Principal Findings: Three types of liposomal agents were fabricated: core-encapsulated, surface-conjugated and dual-mode gadolinium liposomes. In vitro physico-chemical characterizations of the agents were performed to determine particle size and elemental composition. Gadolinium-based and nanoparticle-based T1 relaxivities of various agents were determined in bovine plasma. Subsequently, the agents were tested in vivo for contrast-enhanced magnetic resonance angiography (CE-MRA) studies. Characterization of the agents demonstrated the highest gadolinium atoms per nanoparticle for Dual-Gd liposomes. In vitro, surface-conjugated gadolinium liposomes demonstrated the highest T1 relaxivity on a gadolinium-basis. However, Dual-Gd liposomes demonstrated the highest T1 relaxivity on a nanoparticle-basis. In vivo, Dual-Gd liposomes resulted in the highest signal-to-noise ratio (SNR) and contrast-to-noise ratio in CE-MRA studies. Conclusions/Significance: The dual-mode gadolinium liposomal contrast agent demonstrated higher particle-based T1 relaxivity, both in vitro and in vivo, compared to either the core-encapsulated or the surface-conjugated liposomal agent. The dual-mode gadolinium liposomes could enable reduced particle dose for use in CE-MRA and increased contrast sensitivity for use in molecular imaging.

Original languageEnglish (US)
Article numbere7628
JournalPloS one
Volume4
Issue number10
DOIs
StatePublished - Oct 29 2009

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General

MD Anderson CCSG core facilities

  • Research Animal Support Facility
  • Small Animal Imaging Facility

Fingerprint

Dive into the research topics of 'New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging'. Together they form a unique fingerprint.

Cite this