Novel injectable and in situ curable glycolide/lactide based biodegradable polymer resins and composites

Dong Xie, Jong Gu Park, Jun Zhao, Charles H. Turner

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Novel in situ polymerizable liquid three-arm biodegradable oligomeric polyesters based upon glycolic acid (GA), L-lactic acid (LLA), and their copolymers are synthesized and characterized. Injectable and in situ curable polymer neat resins and their composites formulated with bioabsorbable beta-tricalcium phosphate are prepared at room temperature using photo- and redox-initiation systems, respectively. The cured neat resins show the initial compressive yield strength (YCS, MPa), modulus (M, MPa), ultimate compressive strength (UCS, MPa), and toughness (T, kN mm), ranging from 4.0 to 20.1, 201.5 to 730.2, 82.7 to 310.5, and 1.02 to 3.93. The cured composites show the initial YCS, M, UCS and T, ranging from 27.7 to 56.4, 1440 to 4870, 81.6 to 158.9, and 0.94 to 1.97. Increasing GA/LLA ratio increases all the initial compressive strengths of both neat resins and composites. Increasing filler content increases YCS and M but decreases UCS and T. A diametral tensile strength test shows the same trend as a compressive strength test. There seems to be an optimal flexural strength for the composite at the filler content around 43%. An increasing molar ratio increases curing time but decreases the degree of conversion (DC). An increasing filler content increases curing time but decreases exotherm and DC. During the course of degradation, all the materials show a burst degradation behavior within 24 h, followed by an increase in CS. The poly(glycolic acid) neat resin completely loses its strength at around Day 45. The composites completely lose their strengths at different time intervals, depending on their molar ratio and filler content. The degradation rate is found to be molar ratio and filler-content dependent.

Original languageEnglish (US)
Pages (from-to)33-54
Number of pages22
JournalJournal of Biomaterials Applications
Volume22
Issue number1
DOIs
StatePublished - Jul 2007

Keywords

  • Biodegradable
  • Compressive strengths
  • Degradation
  • In situ polymerizable
  • Oligomeric polyesters

ASJC Scopus subject areas

  • Biomaterials
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Novel injectable and in situ curable glycolide/lactide based biodegradable polymer resins and composites'. Together they form a unique fingerprint.

Cite this