Pathway-Centric Integrative Analysis Identifies RRM2 as a Prognostic Marker in Breast Cancer Associated with Poor Survival and Tamoxifen Resistance

Nagireddy Putluri, Suman Maity, Ramakrishna Kommagani, Chad J. Creighton, Vasanta Putluri, Fengju Chen, Sarmishta Nanda, Salil Kumar Bhowmik, Atsushi Terunuma, Tiffany Dorsey, Agostina Nardone, Xiaoyong Fu, Chad Shaw, Tapasree Roy Sarkar, Rachel Schiff, John P. Lydon, Bert W. O'Malley, Stefan Ambs, Gokul M. Das, George MichailidisArun Sreekumar

Research output: Contribution to journalArticlepeer-review

61 Scopus citations

Abstract

Breast cancer (BCa) molecular subtypes include luminal A, luminal B, normal-like, HER-2-enriched, and basal-like tumors, among which luminal B and basal-like cancers are highly aggressive. Biochemical pathways associated with patient survival or treatment response in these more aggressive subtypes are not well understood. With the limited availability of pathologically verified clinical specimens, cell line models are routinely used for pathway-centric studies. We measured the metabolome of luminal and basal-like BCa cell lines using mass spectrometry, linked metabolites to biochemical pathways using Gene Set Analysis, and developed a novel rank-based method to select pathways on the basis of their enrichment in patient-derived omics data sets and prognostic relevance. Key mediators of the pathway were then characterized for their role in disease progression. Pyrimidine metabolism was altered in luminal versus basal BCa, whereas the combined expression of its associated genes or expression of one key gene, ribonucleotide reductase subunit M2 (RRM2) alone, associated significantly with decreased survival across all BCa subtypes, as well as in luminal patients resistant to tamoxifen. Increased RRM2 expression in tamoxifen-resistant patients was verified using tissue microarrays, whereas the metabolic products of RRM2 were higher in tamoxifen-resistant cells and in xenograft tumors. Both genetic and pharmacological inhibition of this key enzyme in tamoxifen-resistant cells significantly decreased proliferation, reduced expression of cell cycle genes, and sensitized the cells to tamoxifen treatment. Our study suggests for evaluating RRM2-associated metabolites as noninvasive markers for tamoxifen resistance and its pharmacological inhibition as a novel approach to overcome tamoxifen resistance in BCa.

Original languageEnglish (US)
Pages (from-to)390-402
Number of pages13
JournalNeoplasia (United States)
Volume16
Issue number5
DOIs
StatePublished - 2014

ASJC Scopus subject areas

  • Cancer Research

Fingerprint

Dive into the research topics of 'Pathway-Centric Integrative Analysis Identifies RRM2 as a Prognostic Marker in Breast Cancer Associated with Poor Survival and Tamoxifen Resistance'. Together they form a unique fingerprint.

Cite this